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“He who knows the All,
but lacks himself,
lacks everything.”

Gospel of Thomas (translated by David R. Cartlidge, 1980)






Abstract

Analysing and modelling metocean variables is crucial in various scientific fields with both
socio-economic and environmental impacts, such as offshore engineering and coastal
morphology studies. The rapidly emerging sector of marine renewable energy is also largely
based on the sound analysis and modelling of the metocean climate in a candidate area at
various temporal scales (e.g. seasonal, interannual). The involved physical processes that
govern the metocean environment are highly interrelated; linear metocean variables are related
with either other linear or directional variables and vice versa, rendering their adequate joint
description a demanding task. On the other hand, their variability aspects are of great interest
for long-term planning purposes. Furthermore, such phenomena can be realized at entirely
different time scales; for instance, fatigue of structures placed in the marine environment or
equilibrium of a coastal zone due to erosion/accretion patterns are affected not only by the
severe (extreme) environmental conditions acting for a limited time period (e.g. storm events)
but also by their repeated and continuous action corresponding to a longer-term “fatigue”.

The focus of this dissertation is on the analytic probabilistic modelling and assessment of linear
and directional metocean random variables aiming at an integrated and feasible approach for
climate modelling. This task extends to a wide spectrum of less known probabilistic approaches,
such as linear-directional joint probability models, circular regression and calibration,
estimation of extreme events taking into account the directional covariate, etc. The modelling
approaches refer to the long-term scale, but the methods apply equally well on any time scale.
Moreover, the multitude of alternative models renders the statistical decision procedure a very
delicate task, since the results of this step play a decisive role in ocean and coastal engineering
applications.

In the first part, the main theoretical background is presented starting with conventional linear
and directional univariate and bivariate models, along with some distributions that have been
recently proved to be efficient for modelling metocean characteristics, while mixtures of
different univariate models are also considered. The examined bivariate models that are based
on the corresponding marginal distributions and an appropriate dependence structure, are
described in detail. Both dimensions (one and two) are addressed by parametric and non-
parametric models. Also, the current availability of multiple data sources leads to the necessity
of validating and correcting (calibrating) metocean data with emphasis on regression models
that take into consideration errors in both variables and the presence of outliers, while
calibration techniques are described for linear and directional features, with the latter being
rarely adopted in relevant applications despite its significance. As safety, performance and
economic viability of marine structures are affected by directional features, directionality is
incorporated in a standard extreme value distribution in order to examine the dependence of
extreme values of linear metocean variables with a directional covariate. An alternative
penalised likelihood criterion is proposed to estimate the unknown parameters, which seems to
be numerically stable for optimization.

In the second part of this thesis, the above statistical methods are implemented on real data sets
stemming from the disciplines of climate modelling and marine renewable energy; in some case
studies, new statistical measures and methodologies are proposed. Specifically, long-term time
series of offshore wind speed and direction are assessed across the Mediterranean Sea in order
to identify systematic patterns and reveal the general features of the wind climatology patterns,
with the proposed variability measures revealing further directional attributes of the wind flow.
As marine energy applications require data of high quality, linear and directional wind and
wave data obtained from less reliable, but easily-accessible, data sources (satellite data,
numerical results) are calibrated using in situ measurements as a reference source. To this end,



specific robust estimators for linear variables seem to systematically provide better results than
the ordinary least squares for the examined locations while, after an analytic evaluation, circular
calibration based on the orthogonal distance outperforms and thus is suggested to be adopted
in energy assessment studies. Wind speed and direction data are thoroughly examined by means
of various (parametric) univariate and bivariate models. The evaluation of the bivariate models
indicates that there is inconsistency of univariate models to the bivariate case in terms of
performance. Wave energy flux and mean wave direction are also modelled using both
parametric and non-parametric bivariate distributions to evaluate the validity of the latter and
investigate the most appropriate for ocean energy applications and optimization of the
performance of wave energy devices. The extreme events of significant wave height are
modelled with a directional model in order to identify the dependence of the design values with
wave direction; this model should be applied for the estimation of extreme wave (and wind)
loads for any non-symmetric structure operating in the marine environment.

Moving to the coastal environment, the last part addresses wave action in sediment transport
modelling based on two different approaches under the perspective of frequency and amplitude
of waves; in the first one, the action of individual high waves, for a short time window, is
examined on a sandy beach to give insight into the impact of hydrodynamics and circulation on
sediment transport processes during and after such intense sea states. In the second case, the
accumulative action of waves throughout a typical year is considered studying the
corresponding impacts on a sandy beach vulnerable to erosion phenomena, with a profound
touristic character. For the latter approach, a cost-effective method is introduced combined with
the philosophy of wave input reduction techniques; the full wave time series is substituted by
representative wave conditions that are able to initiate or not grain motion. Both case studies
are based on the use of a widely recognized process-based model that integrates several distinct
models.



IMOBavede®PNTIKN HOVTELOTOIN O YPOUUMK®DOV KOl KATEVOLVTIKAOV peETOfAnTOV
UVELOAOYIKAOV KOl KULATIK®V {OPOKTPIGTIKOV NE €Qupnoyés oto 0ardooio mepifpairov

Ordpa E. Kopabavéon

EBvikd Metodpro ITorvteyveio
YyoAn Navanyov Mnyavoldyov Mnyovikov
Topéag Navtikng kot @ardooiog Yopoduvakig

Iepiinyn

Ot peTeE®POLOYIKEG Kol KEVOYpapIkeS petaPintég (metocean variables) dwadpapariCovv
ONUOVTIKO pOLO GE Uid GEPA OO OAANAEVOETEG UOIKEG SIEPYOCIES OV AMAVTIMOVIOL GTO
Bardocio mepidriov. H akpiprig yvdon Tov onNUoVTIKOTEP®Y TTUYMV TOV OVELOAOYLKOD Kot
KOHOTIKOD KAMPOTOg KoOmG Kal 1) ekTipnomn axpaiov yeyovotwov gival Oepeldoovg onuaciog
Kol GUUPAALOVY GTO UETPLOGUO KIVOOUVMV EITE OVTEG OPOPOVV KOTUCKEVES EITE TNV OCPAUAELL
g avBpomvng {ong otn Bdhacca. Evoeiktikd, opiopévol and Toug TOUEG EQUPLOYDOY TOV
glval otevd cLVOEdEUEVOL LIE TV KOAT YVAOGOT TNg KAaToloyiog givar to €pyo Boddootog
UNYOVIKNAG  (T.)., OYEOWGUOC KOU KOTOOKELY TOPAKTIOV VTOOOUMV), Ol VAEPAKTIES
dpaotnproTTES (.., TAATPOPLES EEOPLENG TETPEAIOL), 1] OlOGTIOPE PUTT®V GE AEPQ. KOl VEPO,
0 TPOYPOUUOTICUOC TOPEIDV TAEDGNG TAOI®MV, TO QUIVOUEVO OlaPpmonc-omdbeong Kot ot
Ourdocieg avavemoipueg mnyég evépyetog (OAIIE), mov mapovsialovy av&avouevo evolapépov
YL avanTuEn TIg TEAEVTAIEG dVO JEKOETIES.

I'evikd, T0 LETEMPOAOYIKO KOl MKEAVOYPOUPIKO KAMUOTIKO GOGTNLO 08V UTOPEL VO, TEPTYPOQEL
AETTOUEPDC AOY®D TNG UM EMAPKOVG N EAMTOVG YVOONG TOV (QUOIKOV VOU®OV KOl TOV
avopiBunTev Topaydviov Tov ennPedlovV T OVTIGTOU(ES GUVICTAGES TOV KOl TPOKOAODY
aotdBeieg kol un-ypoupkotec. Emouévmg, n avaykn eieoywyng mlovobempntikdv vvolmv
K0l OTOTIOTIKOV HefddmV givol avaykaio yio Tnv &V AOY® TEPLYPAPT] GE LU0 GUYKEKPLUEVT
mePloyn kKot ypovikn mepiodo. Ov ovvnbelg ypoppkés tuyaiec petaPintég  mov
YPTOLLOTOLOVVTOL Y10 TOV YOPOKTNPIGUO TMV OVELOAOYIK®OV KOl KUUATIKOV GLUVONKOV etvor 1)
TOXOTNTO TOV OVEUOD, KOl TO GNUAVTIKO VYOG KOUOTOC Kol 1 HECT TEPLodog KOUATOG,
avtiotorya. [Tapdia avtd, n meptypoaen avti onpepa Bewpeitot apKeTd EAATNG KoL Y10, TO AGYO
avTo, ot avtictolyes katevduvtikég petafantég (dni. n devBuvon avépov kot kopatog) Oa
TPENEL EMIONC VO, GUUTEPIAAUPAVOVTOL Y10, TNV OAOKANPOUEVT] TEPTYPOPT TOV OVELOAOYLKOD
Kot kKopatikod kiipotog. H onpacio g kotevbuvticotntog £xet emonuoviel amd tpodceateg
peiéteg 1000 Yo tig ®AIIE 600 ko v mapaxtio dSidfpwon, mov kabiotodv Kot Toug 60
KOPLOVG GEOVEG EPAPUOYDV TNG TAPOVGOC SLUTPIPNC.

Boowog 6to30G6 TG mapovoag datpPig eivar 1 avaTTuén pog OAOKANPp®UEVNG, KOTA TO
duvatov, TPOGEYYIoNG Yo TV THavOBE®PNTIKY LOVTEAOTOINGT] YPOLUUK®Y KOl KATEVOLVTIKOV
UETAPANTAOV AVEUOAOYIKOV KOl KOUATIK®V Tapapétpmv. [apolo mov 1 avamtuén avti agopd
TIG CUYKEKPUUEVEG TOPOUETPOVS EVTOVTOIS UTTOPEL EDKOAO VO KOADWEL Kol OTO100NTTOTE GALO
KaTeELOVVTIKO TTEPIPAAAOVTIKO YOPAKTNPIOTIKO (.., Boddooia pedpata). [a v emitevén
avtod TOov OTHYOVL, M Epyacia ekTEiveTOl GE £va VPV  PACUO ALYOTEPO YVOOTMOV
TOovolemPNTIKOV TPOcEYYicEDY, OTMG €ival To SIOAOTOTA UOVTELN (TOPOUETPIKG KoL U
TOPOUETPIKE) YPOUMKOV Kol KOTELOLVTIKGOV HETOPANTOV, M ToAVOpounon kol d1dopHmon
KOTELOUVTIKOV UETOPANTAOV, T EKTIUNON OKpaiV YEYOVOT®V AduPdvovtag vmoyn v
KatevBuvTIKOTTO ¢ GVUUETOPANTY, K.&. Ta padnuotikd epyoleio kot ot pebodoroyieg mov
TAPOLGIALOVTaL, E0TIALOVTOL GE GUYKEKPLUEVEG TTLYEG TOV KAILATOG TOv glvar ite AyvmoTeg
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glte gpapuoloviar ondavio. Emiong, yevikd, evod avagépoviol otn pokporpodeoun kAipoka,
Bpiokovv evtovtolg €GOV KAAN EQPOPIOYN GE OTOONTOTE YPoViKn KAlpaka. Emimpdcbeta, 1
avaAvon pmopel gukoAa va emektabel Kol o€ dAheg cuvapeic TEPPAALOVTIKEG LETAPANTES,
omm¢ etvar to mOAPPOLOKO €VPOg (HETAEL mANUUNG Ko pnylag), m Oepupokpacio kot 1
TUKVOTNTO AEPA KO VEPOD, 1] AAATOTNTA KOt 1] NAlKT akTivoPoAia, kaOdc kol o GAAL TEdiaL
TOV YEOETIGTNUAOV, OTMG 1] LETEWPOAOYIQ, 1) YEOAOYIM, 1) YE@YPOAPIQ KoL 1) OIKOAOYICL.

THETIKA pPE TNV OVAALOY KOl LOVTEAOTOINGTY UETEMPOAOYIKAV Kol MKEAVOYPOUPIKAOV
UETAPANTAOV, 1 EPYOCIO EMKEVTPDOVETUL GTOVS 0KOAOLOOVG GTOYOLG:

® avAmTLEN HOG OAOKANPMUEVIG TPOGEYYIONG Yol TNV HOVIEAOTOINGT YPOUUIK®V Kot
KATELOVVTIKOV TVYO®V LETAPANTOV HETEDMPOLOYIKDV KOl MKEAVOYPAPIKADV TOPAUETPOV

® EMOCNUAVON VEOV YOPOUKTNPIOTIKOV CYETIKOV WE TNV KATELVOUVTIKY HETOPANTOTNTO TOL
OVELOAOYIKOD KOl KOUOTIKOD KATLOTOG

® GUOTNUOTIKY MEAETN Kot GUYKPIOT O1AQPOPOV TOPUUETPIKMDY HOVIEAMV Y10 YPOUUIKES KoL
KATELOVVTIKEG LETAPANTEG TOCO GTN LOVOSIAGTATI OGO KOt TN JOIUCTOTN TEPITTMOT HECM
GTOTIOTIKAOV OEIKTMV

o 51e€001KN 0&LOAOYNOT TOPAUETPIKMV KoL [UT] TOPUUETPIKMY LOVTEA®V KATOAANA®V Yio TV
omd KOOV TEPLYPOPT] YPOUUKOV KOl KOTEVOUVTIKOV UETOAPANTOV OVEHOAOYIKMOV KoL
KUULOTIKAV YOPOKTPICTIKOV

o avdmtuén pebodoroyiog ywa v agloloynon Ayotepo aSOMOTOV TYOV OESOUEVOV TOV
Aapupdvouv VoYM TIG EKTPOTEG TOPATNPNGCELS GE £va OElYH YPOUIK®OV UETOPANTOV,
Kabmg ko n d1opHwon katevbuvTikdy petafAntdv (n onoia cvvibwe dev epapudletarl otn
oLVNOIGUEVT TPOKTIKY])

e YPNON TEYVIKOV OO TN HOVOUETOPANTH OVAALGT OKPOIOV TIUOV HECH HOVIEA®V TOL
TEPIAAUPAVOLV TNV KOTELOVVTIKOTNTO (OC GUUUETAPANTN, 1) ELGOYWOYR EVOG VEOL KPLTNPiov
TOWIKOTOMUEVTG TOAVOPAVELLS Y10 TNV EKTIUNGCT TOV TOPAUETPOV Kot 1] SIEPEVVI|ON TNG
GUUTEPIPOPAS TOL LOVTEAOL UE Pdom dtapopeTikég peBOd0VG EMAOYNC KATOEAIOL Kot ato-
opadonoinong (declustering) axpaimv dedouévmv.

H exrtipnon kot n mpoPieyn tov nediov e petapopds Wnudtov Kot Tov HETUBOAMY TOV
Oarhdociov TLOuEva AdY® TG dpAoNS TOV KUUAT®V apopd £vo oo EVPD TEDIO EQUPLOYDY
ue 1010iteEPO EVIOPEPOV KOl OE GUECT GYEOT] UE TO OVOTEP® MoONUOTIKG gpyoleio TTOL
eetalovral. Or petoforiopeveg ypovikég KAILOKES WEAETNG TOV KULUOTIOHAV, OTO TNV
EKONAMOT KATALYIOIKOV GUUPAVI®OV UEGH GE KATOEG MPES £MC TO TUTIKO KVUATIKO KAIUO GE
U0 TTOPAKTIO, TTEPLOYN, EYOVV MG ATOTEAEGUA TN OLPOPETIKN OTOKPIoT TV ICNUATOV GTNV
mapaktie {ovn. T 1o Adyo avto, N petaxivion tov inudtov eéetdleton i) Aappdvoviag
VIOYT UEUOVOUEVE KOTOLYOKG @ovopeva mov eEelMooovior og éva GOVIOUO YPOVIKO
dloTnua, Kol i) TNV emavarauBoavOouevn dpaor TV KOUUTICUOV HECA GE £Vl £TOC.

210 mAaicto ovtd, TEOKAV oplouévol TpdcheTol 6TdHYOL Yo TNV Topova dSaTpPn:

o 0&l0AOYNON TOV ETMTTOCEDY TOV KVUATICUOV OTIS SIEPYOTieg WNIATOUETUPOPAS KOUTO TN
SLapKeLn Kot ETELTO AmO EVIOVEG KOTOOTAGELS OdAaccag

o avdmtuén pebodoroyiag Yo TNV ektipnon Kot TpoPAeyn Tov emmédov Tov mbuéva, 1 omoia
glval amodoTIKOTEPT O TPOG TOV VIOAOYIOTIKO XpOvo Kot Paciletor otn @lAocoin TV
TEYVIKOV UEI®ONG KOROTIKOV dedopévov elcaymyng (wave input reduction techniques),
Aappdvovog voyn TV abpoloTIKn SpaoT TOV KUUATOV.

O1 800 aVOTEP® GTOHYOL OTOCKOTOVV GTIV KAADTEPT] KATAVONGOT) TNG SUVOUIKTG GUUTEPLPOPES
€VOG TOPAKTION GLGTHLOITOC, TNV OvayvepLon Hotifov dtdfpwong/arndbeong Kot Ty ypryopn
Kol amodoTIKN TPOPAEYN avTioTory®V HEALOVTIIKOV Tdoewv. Oleg avtéc ol amoyelg eivat
HEYAANG OTOLOOLOTNTOG KOTA TO GYEOIOCHO Kol TN SloEIPIon TOPAKTIOV OPAGTNPLOTHT®V,
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£pocov BéPata vdpyel aloAdynomn TS IKAVOTNTAS TOL LOVTELOL OVAPOPIKA LE TIG TAGELS TOL
TOPOTNPOVVTIOL GE GUYKPION UE TNV TPOYUOTIKT KATAGTOGC.

H mopovoa epyacio ywpiletal oe éva eloayyikod kepdiato, og Tpio KOPLO LEPT) TOV ATOTEAOVY
70 Bactkd kopud TG StaTpPng, Kabds Kot o€ Vo GUUTEPUGUATIKO KEPAAAL0. ZTO ELGAYMYIKO
REPOG TOPOVGLALETAL TO YEVIKOTEPO TAMICIO TNG €pyaciog mpofdilovtag Tn onuoacio Tov
LETEMPOLOYIKDV KOl OKEAVOYPAPIKAOV LETAPANTAV GE SLAPOPOVG EMGTILOVIKOVS KAASOVG Kot
T onpoaocio g perétng g Korevbuvtikdtntag 6tovg topeic Tov GAIIE kot g mapdKTiog
daPpmonc. Xto TAAIGI0 AVTO, TEPTYPAPOVTL AVOAVTIK TO, KIVITPO KoL Ol EPEVVNTIKOL GTOYOL
NG TOPOVoAG EPYACING, KOl TOPOVCIALETAL 1) CLVEIGPOPE KOOMG Kol Ol dNUOCIELCEIS OF
EMGTNUOVIKA TEPLOOIKA Kol O1eBvi) GLVEDPLO, TOV TPOEKLY AV KOTA TN OLAPKELD GLTAS TNG
UEAETTG.

210 TPpOTO PEPOG, TO omoio amoteieiton amd Tpiol KEPAAML, AVOTTUGGETOL TO Be®PNTIKO
TAOIG10 Y1t TN LOVTEAOTOINOT] YPAUUIKOVY Kot KatevBuvtikdv petafAntav. ITo cuykekpéva,
10 Kegpahoro 1 mepihapPdver ™ mbovobempntiki HOVIELOTOINGN GVEHOAOYIKAV KOl
KOUOTIKGOV UETAPANTAOV YL TO YOPAKTNPICUO TOL KAIMOTOC HE YPNOT| TOPUUETPIKAOV
GTOTIOTIKOV HOVIEA®V, LECH Be@pNTIKOV KATOVOU®MY, KOl U] TOPUUETPIKOV LOVIEA®V, TOL
OEV OTTOUTOVY CUYKEKPIUEVES DTODEGELG Y10 TN LOPPT TOL TANBVGLOV atd TOV 071010 TPOEPYETAL
70 detypo. Xt mhaicio g datpiPng, e€etdlovtal avaAvTiKd TOAVAPLOUES TOPOUETPIKES KOl
UN-TOPAUETPIKES KATOVOUEG Yio TNV amd KOOV TEPLYPOUPN YPOUUIKOV Kot KOTELOLVTIKOV
petafAintav mov yopaxtmpifovtol and kamowo Pabud eEdptnong. H emioyn tov katdAiniov
UOVOUETAPRANTOV Kol SIUETAPANTOV LOVTEL®V, TOPAUETPIKMOV 1| UN TOPAPETPIKOV, Baciletan
0€ OTOTIOTIKG KprThpla KoANg Tpocappoyng (goodness-of-fit criteria). Ta amotedéopota puag
TETOLOG OVAAVLOTG KPIvovTal omopoaitnto oTnv TEPITTOon HEAETNG TOL KMUOTOC oE o
exteTapévn meployn (m.y., wo Boarddooio Aekdvn). Méocom TG y®PIKNG KOTAVOUNG dlapOpmV
GTOTIOTIKOV HEYEDDV (T.)., LEOT TN, LETAPANTOTNTA, CLGYETION, TAGT) KOl TOV TOPOUETPOV
ov yopaktnpifovv o Katavoun eival QKT 1 TEPYPaPn TG HETAPANTAS EVOLOPEPOVTOC.
210 Kegahato 2, avantoccetal 10 Oewpntikd vmofodpo TG ypopMKnG moAvdpdunong, M
omoia e&etdlel ) oyéomn peta&d 600 1 TEPIGGOTEP®Y EUTAEKOUEVOV UeTAPANTOVY. To poviélo
YPOUUKNG ToAvopounong Pociletoar oe cuykekpluéveg mopadoyés (m.y. aveSoptnoio Kot
KOVOVIKOTNTO KOTOAOIT®OV) Kol omoladnmote mopoPiocn tovg pmopel vo odnyfHoel o€
E0QUAUEVO GUUTEPAGUOTO. ATTO TNV GAAN TAEVLPA, TO OVEUOAOYIK( KO KUUOTIKG SEGOUEVA
ouyxva mopafralovv opopéveg amd TG vmoBEcEl NG YPOUUIKNAG TaAvdpounong Adyw
COUAUATOV, OVOUOIOYEVAV Kol GAA®V Topayovieov ennpedlovtag tnv €ykupotnto Tov
ocvunepacudtov (PA. Mapdpmuo E). Kabog n ektiunon tov napapétpmv toAvopounong 1e
m yvoot| uébodo ehayictov teTpaydvev emnpedleTor amd TNV VmapEn  EKTPOTMV
TOPOTNPNCEWY, EIVOL OMUOVTIKO Vo xpnotponotBoly ot avBektikég pébodot maAvopounong
(robust regression methods) mov Bempovvtar kot’ €€0yNV KATOANAOTEPEG OE MEPUTTMGELG
amokAiicemv amd Tig vrobécelc. Tétolov €idovg avaAven KpiveTal avayKaio GTIC TEPUTTOGELS
Y., VTAPENG TOAAATADY TTNY®V OE00UEVMOV GE U0 TEPLOYN LE OKOTO TNV KOAVTEPT dLVOTNH
dopbwon twv Myodtepo aflOmMoTOV €5 AVTOV. ZTO TEAELTAIO KEPAANIO TOV TPAOTOV HEPOVS
(Kepahraro 3), efetdletor M pHOVTEAOTOINON OKPOIOV TIUOV YPOUUIKOV HETARANTOV
Aappdvovtag voyn Kol T UETOPANTOTNTO TOV OVTIIGTOX®V KATELOVVIIKOV HETAPANTOV.
ZNUEIDVETOL OTL 1] KATOVONGT TNG CGULUTEPLPOPAS TOV OKPUI®V TIUMV HETEDMPOALOYIKMY Kot
KOHOTIK®V 0E00UEVOY GUVOPTNGEL TNE KATEVHVLVTIKOTNTOC EIVAL TTOAD GTUOVTIKT KUPI®E Y10 TO
oyedlaopnd BaAdooimv katackevmv. Ot 000 emKpoTESTEPEC DE®PNOEIC Yo TNV EKTIUNON
TOPAUETPOV ACVUTTOTIKOV KATAVOUDV 0o dedopéva eivat: 1) n uéBodog block maxima, oty
omoio Aapfdavovtal VoY o1 HEYIOTEG TIUES JTETOYUEVOV TUXOI®V UETAPANTAOV, Kol ii) 1)
uébodoc peaks-over-threshold, otnv onoia e&etdletar n axoAovbio aveldpmTmv Kot 1l6évouQ
KATOVELUNUEVOVY TUYOL®V LETABANTOV e TOVS OPOLG NG Va vtepPaivouy Eva dedopévo eninedo.
Ot avoTtépm PEBOSOL YPTCILOTOIOVVTOL GTNV WKEAVIO, UNYOVIKT Yo TNV TpoPAeyn (extiumon)
TIUOV GYESLACEMC KO TOV AVTIGTOLY MOV TEPLOSMV EMUVELPAVIONC TNG VIO UEAETT] LETOPANTNC.
Y10 mAoiolo owtAg TG OTpiPng, ypnowomoteitoan 1 dgbtepn Oesdpnomn, uHe ypHon G
katavounc Generalized Pareto, n onoia Bewpeiton 1 TAEOV KOTAAANAN Yo T GLYKEKPIUEVN
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TEPIMTOOT. XTO TAOIGI0 AVTO, O TOPAUETPOL TG EKPPALOVTUL GUVAPTICEL TNE KOTEVBVVTIKNG
petaPAntig péom pag oglpdg Fourier. T Tov VTOAOYIGHO TV TOPOUETPOV THG KOTOVOUNG
Generalized Pareto mpoteivetor 1 péBodog UEYIGTNG TOAVOPAVELNG LE TNV EIG0YOYT EVOC
emmAéov Opov mowng mov eEAcPArilel oTafePOTNTA GTA OMOTEAECUATO OVEEAPTNTOS TOV
O6pov g ogpdg Fourier. Eniong, e€gtalovtot d1dpopot péB0dot yio Tov VITOAOYIoHO TG TG
KATOEAIOV KOl TNV Om0-OHOdOTOINoN TV JE00UEVOYV, EVD OlEPELVATOL Kot 1) EMidpacom
Swedpov cuvvdvacudv o610  katevBuviikd poviého akpoiov Tpdv. Ta  aplBpntikd
ATOTELEGLLOTA TTOV TPOKVTTOVY OO TNV GUGTIUOTIKY LEAETY TNG OVAOTEP® TPOGEYYIONG OE
OVELOAOYIKG Kot KOpOTIKG Oedopéva otn Mecdyelo ®drocco kol epapuofoviol GTovg
KAGOOVG TG KAportoloyiag kat tov OATIE mapoveialoviatl 6to ddtepo pépog (Kepdiaro 4).

To tpito kot tedevtaio pépoc (Ke@aharo 5) eivol apiepopévo 6to mopdktio nepipdilov kot
avtetonilel nuate S1GBpmong TV aKTOV 68 AUUMOES Tapaiieg AOY® Tng dpdong TV
Kopdtov. o v enitevén tov o1d(OV aVTOD TOV PEPOVG, EYIVE XPNOT EVOG EVOEDELYIEVOL
nokéTov Aoylopkod, tov MIKE 21/3Coupled Model mov avomtoybnke omd to Danish
Hydraulic Institute (DHI). To poviého avtd kdvel o0LeVEN €vOG QAGUOTIKOD KLUOTIKOD
HOVTEAOL YlOL TNV TOPOY®YN TOV KLUOTOYEVAOV SUVOUE®DY, €VOC VIPOSUVOUIKOD VIOl TNV
TOPOYDYN PEVUATOV KOl TNG GTABUNG TOL VEPOD KOl EVOG LOVTEAOL 1 NLOTOUETAPOPAS Yo TNV
petaforn g Pobvpetpiog.. AVo TEPLOYES, EVAANDTEC GE PUIVOUEVO JAPBpmong, EmAEYONKaY
Yo TN LEAETN OLTH® 1 TPAOTY €lvan 1 maporio g Bapkilag, oto Zapmvikd KOATO, Ue Evo EVTOVO
YOPOKTN PO SIOLOPPOUEVO GE VoL aoTIKO TEPPAALOV, Kot 1) de0TEPN elvan | akTi TG Xnteiog,
omv ovatolkn Kpntn, po mopoiio pe d&ova avamntvéng tov tovpiopo. Kot otig dvo
TEPIMTMOGELG, Ol GUVETELEC TOV VYNADV puOumv daPpwong Ba frav emlneS o€ OUKOVOUIKO
K0l KOWV®VIKO EM{TEDO.

H epyoacio olokAnpoverar pe ) O10TOTOOT TOV GNUOVTIKOTEP®Y GCUUTEPACUATOV TG

£PYOOTING KO GYETIKOV TPOTAGEMVY Y10 LEAALOVTIKN £pEVVA TAV®D GTOVG AEOVEG OV E€ETAGTNKAY
(Kepdaiaro 6).
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The main notation used in this thesis are listed below. Since there is a large number of
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Introduction

Background and research motivation

Metocean (i.e. meteorological and oceanographic) variables play a critical role in a variety of
highly interrelated physical processes encountered in the marine environment. Among the
multitude of variables, wind and wave parameters control the air-sea exchange of energy mass
and momentum and, by extension, various scientific fields, with both socio-economic and
environmental impacts, are influenced. In this context, the accurate knowledge of the most
important aspects of wind and wave climate and the reliable estimation of extreme events so as
to contribute in the reduction of risks, are of fundamental importance. Closely related areas of
application of climatological research are engineering projects such as the design and
construction of coastal infrastructures, offshore activities (e.g. platforms for oil extraction), air
and water pollution dispersion, ship routing and scheduling, sediment transport and coastal
erosion/accretion, and marine renewable energy sector with an increasing interest for
development the last two decades.

In general, the metocean climate system cannot be described in full detail since its components
are controlled by physical laws and countless factors, either adequately or partially known, that
induce instabilities and nonlinearities. Therefore, the need of probabilistic concepts and
statistical tools is inevitable in order to describe the metocean climate at a particular location
and time period. The most typical linear random variables used to characterize wave and wind
conditions are significant wave height and mean wave period, and wind speed, respectively.
However, the description of the wave and wind climate is limited if these parameters are solely
provided; thus, a more integrated assessment is needed in order to define the climate accurately
in an area of interest. In this context, the corresponding directional variables (i.e. mean wave
and wind direction) complete the description of the local/regional wave and wind climate and
should always be incorporated in such analysis. The importance of including directionality has
been highlighted in many previous studies concerning, for instance, marine renewable energy
(Porté-Agel et al., 2013; Atan et al., 2016; Hildebrandt et al., 2019) and coastal erosion (Harley
etal., 2017; Mortlock et al., 2017; Yanalagaran and Ramli, 2018).

Analysing directional data, one of the main aspects in this thesis, is a rather old subject in
mathematical statistics; however, the advance of this field follows a slow pace compared to the
statistical analysis of linear data. It can be said that the 1900s was a milestone for the initiation
of modern directional statistics with Rayleigh (1880; 1905; 1919), Kluyver (1906) and Pearson
(1905a; 1905b; 1906) studying the uniform random walk on the sphere, and von Mises (1918)
introducing a distribution on the circle. Yet, after 1953, Fisher, Watson, Mardia, Batschelet and
other researchers contributed to the essential growth of studying directional data, taking into
account the curvature of the sample space, via numerous techniques and directional
distributions. Directional observations are mainly regarded as points (or vectors) either on the
circumference of the unit circle of R?, or on the surface of the unit hypersphere of R%, d > 3,
referred to as circular and spherical data, respectively. Diverse scientific disciplines deal with
measurements that are recorded as angles, orientations or directions. Typical examples of
directional data in physical and life sciences include wind direction measurements in
meteorology, wave and current directions in oceanography, the study of directions
(orientations) of birds (animals) and movements of organisms in biology and ecology,
respectively, the analysis of geological phenomena such as the orientation of rock fractures and
cores in geology, the determination of the location of an epicentre of an earthquake in earth
sciences, and the description of the motion of celestial bodies in astronomy. The sense of
rotation (clockwise, counter clockwise), the arbitrary choice of a unique origin (called zero
direction), the lack of notion of minimum and maximum values (ranking), the coincidence of
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the “start” and “end” of their range (i.e. 0 = 2m), and the inherent periodicity (i.e. two points 6
and 0 + 2km, k = 0,11, £2, ..., represent the same point on the unit circle) are some distinctive
characteristics of circular data that render their statistical analysis dissimilar from linear data;
thus, the commonly used statistical tools applied for the dominant linear variables, from the
calculation of simple descriptive statistics to statistical inference, are not appropriate.

Marine renewable energy and coastal erosion, the two main pillars of application throughout
this thesis, come under the umbrella of climate change. Climate change mitigation requires
changes in the global energy system with oceans offering a vast source of renewable energy
that up to now has not been utilised on a significant level despite its great potential. In order to
meet the EU targets by 2030 and 2050 as regards energy generation from renewables, the share
of marine renewable energy in the final energy consumption should be increased. On the other
hand, the reliable operation, financial viability and local environmental impacts of structures
and devices deployed in the marine environment require the accurate knowledge of metocean
climatology and climate variability, and examination of their response under extreme
conditions. Although nowadays there are plenty of data sources for metocean variables with a
reasonable spatial and temporal coverage and resolution, the need to reduce uncertainties and
improve our knowledge of the marine environment is vital so that the associated risks can be
quantified. Moreover, climate charge is intensifying the problem of coastal erosion, a global
problem that is threatening human activities (e.g. tourism, commerce), properties and
infrastructures along with the biotic and abiotic elements of the coastal environment. The
understanding of sediment transport mechanism in the coastal environment is of paramount
importance for the accurate prediction of shoreline evolution and seabed changes, a rather
challenging issue due to the highly complex processes involved. These processes are under
perpetual changes, which greatly vary in duration and geographic scale, towards an equilibrium
state. The use of numerical models is widely implemented for the simulation and modelling of
sediment transport with the possibility to consider different wave conditions and bathymetric
scenarios and obtain results in a reasonable time frame; see the exhaustive review of
Papanicolaou et al. (2008).

Research aims and objectives

The present thesis attempts to provide a holistic approach for the probabilistic modelling of
metocean linear and directional variables. The mathematical tools and methodologies presented
do not provide an exhaustive means for the metocean climate description and modelling but
focuses on particular aspects that are either not known or less applied. Furthermore, the analysis
can be easily extended to other relevant metocean variables, such as current, tidal elevation, air
and sea temperature and density, salinity and solar radiation, and other fields of geosciences as
well, such as meteorology, geology, geohazards (e.g. earthquakes, floods), geography and
ecology.

Depending on the objectives and requirements of the application, the spatial scale of interest
should be at first defined in order to acquire the most suitable, in terms of spatiotemporal
coverage, data set with the corresponding time series of the linear and directional variables for
the analysis. Even though large-scale studies (e.g. at the global level) can provide a reliable
indication of general long-term trends, they are technically unable to resolve the spatial
variability in a local wind and wave climate scale. In this respect, long-term measurements
obtained by in situ devices, such as meteorological masts or lidars and oceanographic buoys,
are preferable for local assessment purposes since they are considered to be the most reliable,
in terms of quality, data sources, although they usually have a scant temporal extent. On the
other hand, when a larger region is of interest (e.g. a sea basin, world ocean), the most
appropriate data sources for deriving climatologies are gridded data coming either from satellite
observations and other remote sensing instruments (e.g. radar altimeters, scatterometers) or
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hindcast data, i.e. reanalysis of meteorological data and large-scale atmospheric models
producing time series of metocean parameters extending back in time many years. In this
context, the assessment is usually carried out on an annual, seasonal or monthly basis by
providing the corresponding low-order statistical characteristics of the examined variables, such
as mean values and variances, along with additional statistical parameters that quantify the
corresponding temporal variability; see also Figure 0-1. Apart from the identification of the
climate structure for these temporal scales in an area, the analysis of the longer-term changes
and relevant variability is also important in real-life situations such as ocean energy economics;
hence, identification of changes in the multiannual (e.g. decadal) scale can also be examined if
the duration of the available data set permits it. Regardless of the spatial scale, efficient and
reliable metocean climate modelling and estimation of the corresponding extremes requires at
least 30 years of time series (World Meteorological Organization, 2017).

Aim 1. Regression/calibration of linear and directional variables

However, the gridded/simulated data suffer from various types and degree of uncertainties and
measurement errors; see Table E-6-1. The horizontal resolution of gridded data is also an
important parameter, mainly for nearshore areas concerning wind and wave climate studies. Let
us note that the accurate wind modelling in coastal areas remains an open issue due to the
influence of many complex factors, such as land/sea distribution and corresponding thermal
and roughness gradients and local topography. On the other hand, regarding sea waves, the
intense spatial variations of the coast and bottom depth along with the various mechanisms that
take place in the coastal zone require high-resolution grids to resolve the small-scale changes.
Therefore, there is need to use reliable data for validation purposes of the gridded data in case
they are available in the examined region (Menendez et al., 2014). Based on the knowledge of
a physical process, relationship functions among involved variables (e.g. modelled and
measured data) can be derived by means of statistical methods with the most common one the
regression model. Based on the regression models and in case of multiple data sources in an
area, (linear and circular) calibration methods are essential to be applied in order to correct as
much as possible the less accurate data sources. The linear regression model demands the
fulfilment of certain statistical assumptions (e.g. independent and normally distributed errors),
since any violation of these assumptions may lead to erroneous results and invalid conclusions.
Metocean data may often violate some of the assumptions of the linear regression model due to
data errors and inhomogeneities and other factors, and affect the validity of the prediction or
inference. Since regression estimates obtained by the method of least squares are affected by
the presence of outliers, it is important to detect through diagnostic tools potential outliers.
Another way to deal with outliers and small deviations from the assumptions is the use of robust
estimators, which can still deliver results of sufficient accuracy. It is also important to mention
that prior to the use of a data set, the obtained data should be quality checked and validated in
order to confirm that the data set is correct and can be used for the purposes of the application.

Aim 2: Probabilistic modelling and analysis of linear and directional variables

Uni- and multivariate probabilistic models are applied to the obtained dataset for the description
of the assumed population and the accurate estimation of the statistical characteristics of the
metocean variables. The optimum choice of the model is based on some goodness-of-fit criteria.
In this way, it is possible to assess the variability of an energy conversion system at a specific
site and minimize uncertainties in resource estimates during the phase of planning. The joint
probability analysis, used primarily to make predictions about probabilities of occurrence of
specific sea-states and wind conditions for dependent random variables, can improve the
accuracy of the results. Probabilistic modelling of metocean data can be implemented through
parametric and non-parametric models that permit the characterization of the wind and wave
climate under different assumptions, both presenting advantages and shortcomings.

When a larger area is of interest, the results of the climate analysis are provided as a spatial
distribution through standard statistical measures and tools. Such tools include sample
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descriptive statistics, correlations, trends and significance tests while the parameters of any
parametric model, either concerning the entire data sample or extreme data, can be also
presented in the spatial scale. Apart from the standard statistical parameters (mean value,
variance), the mean annual and inter-annual variability can be provided, along with dependence
structures of linear, directional and linear-directional variables. Moreover, the quantification of
climate changes can be provided through trend estimation, where parametric and non-
parametric models can be employed for linear random variables. As regards changes of the
directional variables, the estimation of a linear trend (slope) for directional time series is not
feasible. Hence, the angular distance can be provided for different temporal scales (e.g. from
year to year). Significance testing is necessary to assess whether the obtained trends do exist
and are not a result of strong (e.g. seasonal) variations. Statistically significant trends can be
identified via parametric and non-parametric tests, with the latter being more robust in the
presence of outliers.

Aim 3: Directional extreme value analysis

Furthermore, the understanding of the behaviour of extreme values coming from metocean data
is of paramount importance particularly for the design of marine structures. In order to select
the extremes from the available data sample and fit them with the corresponding extreme value
distribution model, two approaches can be implemented: i) block maxima approach, where a
set of maxima (or minima) of the variable is identified by the whole data set and is modelled
by the Generalized Extreme Value distribution, and ii) the peaks-over-threshold approach,
where the extreme values are selected over a predefined level and the Generalized Pareto
distribution is used to fit this extreme value data set. Using one of the above distributions, the
next step is statistical inference on the data; thus, the return levels, associated with certain return
periods, can be estimated through the inverse distribution function. However, there are cases
where the assumption of statistic homogeneity is violated because of directional (and/or spatial
and temporal) variations, affecting in turn the wind and wave regimes. In this respect, modelling
of linear metocean variables relies on the variability of directional ones.

Summarizing the above discussion on metocean climate analysis and modelling, the following
objectives for the present dissertation were set:

» to develop an integrated approach for climate modelling of linear and directional metocean
random variables;

« to highlight new features regarding directional climate variability, which has received less
attention;

o to study and compare consistently various parametric models for linear and directional
variables in the univariate and bivariate case through statistical metrics;

» to evaluate thoroughly parametric and non-parametric models for the joint description of
linear and directional metocean variables;

« to provide a robust methodology for the assessment of less reliable data sources, propose
methods that take into account outlying observations for linear variables, and correct
directional metocean variables, which is rather uncommon, by identifying the most
appropriate model;

« to use extreme value analysis methods that include directionality, introduce a new penalised
likelihood criterion for parameter estimation, and investigate its behaviour under different
methods of threshold selection and declustering.
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Aim 4: Impacts of wave action on sandy beaches

Estimation and prediction of sediment transport patterns and seabed changes due to wave action
is the other main goal of this thesis. The varying time scales and amplitude of waves, from

hours regarding storm waves to seasons regarding the typical wave climate, result in a variable

behaviour of the sediments in the coastal zone. For this reason, sediment transport is examined
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i) under the action of individual high waves for a short time window, and ii) under the
cumulative action of waves over time (e.g. throughout a typical year). Let us note that the
above-mentioned mathematical/statistical tools can be implemented in the context of sediment
transport modelling, such as the calibration methods for linear and circular variables.

In this connection, some additional objectives for the present dissertation were set:

o to assess the impacts of waves and circulation on sediment transport processes during and
after intense sea states;

e to provide a cost-efficient and replicable method, within the philosophy of wave input
reduction techniques, for the estimation and prediction of seabed level by considering the
accumulative action of waves.

For the above purposes, a well-established and integrated software was used, the MIKE 21/3
Coupled Model developed by the Danish Hydraulic Institute (DHI). The applied modelling
system couples internally a spectral wave model with a hydrodynamic model and a sediment
transport model due to the interdependence of the involved complex physical processes. In
brief, the wave-induced forces computed by a wave model are provided to a hydrodynamic
model to calculate wave-related phenomena (e.g. wave-induced currents) by considering
additional processes as well, such as wind forcing. On the other hand, the hydrodynamic model
returns water levels and currents to the wave model. Then, the sediment transport process is
controlled by the bed shear stress, which is induced by waves and currents. The total sediment
transport alters the bathymetry, which in turn, affects the wave and current fields. In this regard,
two real coastal sites, vulnerable to erosion phenomena, were selected during this research; the
first one is Varkiza beach, located in the Saronic Gulf, with an intense recreational character in
an urban environment and the other one is Sitia beach, situated in the eastern part of Crete
Island, a typical tourism-oriented beach. The consequences of high coastal erosion rates for
both of them would be detrimental for the local societies and economies.

Both objectives can contribute to understand better the dynamics of a coastal system, identify
erosion/accretion patterns and predict quickly and efficiently potential future trends, which can
be valuable for planning and managing coastal activities. Let us remark that it is not expected
to predict with absolute accuracy the values of seabed level because of the high level of inherent
uncertainties but rather evaluate the skill of the model as regards the relevant trends compared
with observations. As was aptly expressed by Klonaris et al. (2018) as regards the tools for
coastal sediment transport and geomorphology: “The complexity and uncertainty of the various
processes is so intense that predictions of sediment loads within a factor of 2, or even 5, are
generally considered as satisfactory, especially for field measurements”. Besides, it has been
shown that sediment transport formulas may provide good results when compared with
laboratory experiments (since they rely more on laboratory than field data for
validation/calibration purposes) but they have an inadequate performance for real-scale
conditions (Li and Huang, 2013) while numerical models provide poor predictions when they
are not properly calibrated (Do et al., 2018).

Innovative contributions and original publications

Along the research of the above mentioned aims, the following original contributions that worth
mentioning have been achieved:

e Structure of an integrated approach for climate modelling of linear and directional metocean
random variables. In this context, new features regarding directional metocean climate
variability are highlighted, which are investigated along with the corresponding linear
variable(s).
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Thorough and quantitatively consistent evaluation of parametric and non-parametric models
for the bivariate case. This analysis revealed that the models that have the best performance
in the univariate case do not ensure their performance when the joint description of linear
and directional variables is considered. In addition, the bivariate parametric model of
Johnson and Wehrly (between linear and directional variables) is recommended to be also
examined even if non-parametric models are considered.

A methodology is proposed to evaluate thoroughly regression/calibration models for the
correction of linear and directional variables obtained from less reliable data sources. For a
reliable assessment, a reference data source is required, ideally measurements from
metocean devices, and concurrent data samples of one-year duration at least. Specific
regression/calibration models are proposed for both linear and directional metocean
variables.

A new statistical metric for the evaluation of circular calibration models is introduced,
named root mean error. It is dimensionless and the lower its value, the better the performance
of the model.

A penalised likelihood criterion is introduced for a more stable optimization of the estimated
parameters of the directional extreme value model based on Generalized Pareto distribution.
These parameters are expressed by means of a Fourier series expansion and even for higher-
order expressions the solution is stable. A thorough analysis is also performed as regards
various methods of threshold selection and declustering in order to obtain a better
understanding of the effects of their different combinations on the estimation of the
Generalized Pareto parameters and the design values of linear variables taking into account
directionality effects.

A new method is developed based on wave input reduction techniques for the estimation of
seabed level in order to reduce the computational time of morphological simulations. Apart
from some basic hydrodynamic parameters and sediment characteristics, the joint
probabilistic behaviour of wave height and wave period, which are usually available from
numerical models, is examined and the corresponding combinations that contribute to the
initiation of sediment movement are identified. This approach is implemented at a sandy
beach and the obtained results are compared against the results from the full range of wave
conditions and the situation encountered in reality.

Parts Il and 111 contain various articles about a specific topic that is related with the description

of

metocean climate with applications in the ocean and coastal environment, respectively.

Therefore, each of the sections of Part Il and the last two sections of part Il is connected with
one paper, and in one case with 3 papers, where part of the results are presented.

As
aut

P.1

P.2.

regards Part Il, the following publications are considered along with the contributions of the
hor:

. Soukissian, T., Karathanasi, F., Axaopoulos, P., Voukouvalas, E.G., Kotroni, V., 2018.

Offshore wind climate analysis and variability in the Mediterranean Sea.
International Journal of Climatology 38: 384-402.
The author contributed to the development of the statistical analysis and the visualization
of the results, performed the statistical tests, investigated the directional changes, and
contributed to the writing of most sections of the original draft, and the review and editing
of the whole manuscript.

Soukissian, T.H., Karathanasi, F.E., 2016. On the use of robust regression methods in
wind speed assessment. Renewable Energy 99: 1287-1298.

The author made all the statistical analysis, wrote all the sections, and contributed to the
review and editing of the whole manuscript.
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P.3. Soukissian, T., Karathanasi, F. Voukouvalas, E., 2014. Effect of outliers in wind speed
assessment. Proceedings of the 24th International Offshore (Ocean) and Polar
Engineering Conference, 1: 362-369, Busan, June 15-20.

The author made all the statistical analysis, wrote all the sections, and contributed to the
review and editing of the whole manuscript.

P.4. Karathanasi, F.E., Soukissian, T.H., Axaopoulos, P.G., 2016. Calibration of wind
directions in the Mediterranean Sea. Proceedings of the 26" International Ocean and
Polar Engineering Conference, 1: 491-497, Rhodes, Greece, June 26-July 1.

The author developed the study work plan, made all the statistical analysis and
visualization of the results, wrote all the sections, and contributed to the review and editing
of the whole manuscript.

P.5. Soukissian, T.H., Karathanasi, F.E., 2017. On the selection of bivariate parametric
models for wind data. Applied Energy 188: 280-304.
The author contributed to the statistical analysis, wrote all the sections, prepared the
visualization of the results, and contributed to the review and editing of the whole
manuscript.

P.6. Karathanasi, F., Soukissian, T., Belibassakis, K., Directional extreme value models in
wave energy applications. Atmosphere, in press.
The author selected the examined locations and obtained the wave data, made all the
extreme value and statistical analysis, investigated the penalized maximum likelihood and
the methods of threshold selection and declustering, made the visualization of the results,
wrote all the sections, and contributed to the review and editing of the whole manuscript.

Paper P.1 is related to Section 4.2, P.2-P.4 to Section 4.3, P.5 to Section 4.4 and P.6 to Section
4.5,

As regards Part 111, the following publications are considered along with the contributions of
the author:

P.7. Belibassakis, K., Karathanasi, F., 2017. Modelling nearshore hydrodynamics and
circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens
Gulf. Oceanologia 59(3): 350-36.

The author set up the coupled model, validated the model results against in situ
measurements, made the visualization of the results, wrote all the sections, and contributed
to the review and editing of the whole manuscript.

P.8. Karathanasi, F., Belibassakis, K., 2019. A cost-effective method for estimating long-
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Thesis outline

The thesis is divided into three major parts. In the first part, comprised of three chapters, the
theoretical framework for modelling linear and directional variables is developed. Results from
real data sets stemming from the disciplines of climate modelling and marine renewable energy,
most of which have been published or submitted for review, are presented in the second part.
The third part is devoted to the coastal environment and addresses coastal erosion issues on
sandy beaches due to the wave action.



Introduction

In Chapter 1, the probabilistic modelling of metocean (linear and directional) variables is
introduced. Parametric and non-parametric models are presented for the description of both
single linear and directional variables (univariate case) and their joint behaviour (bivariate
case). The parametric bivariate models are based on the marginal distributions of the
corresponding linear and directional variables along with a dependence structure and the linear-
directional density is estimated by the use of copulas, with Farlie-Gumbel-Morgenstern (1956,
1960) and Plackett (1965) families, and the model proposed by Johnson & Wehrly (1978).
Kernel density estimators are used for the non-parametric univariate and bivariate modelling of
both linear and directional variables.

Chapter 2 focuses on the calibration problem of linear and directional variables in regression
analysis. Along with the simple linear model, more efficient estimators, the so-called robust
estimators, are presented that are less sensitive in the presence of outlying observations, which
result in violations from the standard assumptions of the former model. Circular regression
models, which involve both response and predictor circular variables, are introduced along with
calibration models, that have received lesser attention in the relevant literature. The latter are
based on distance-based estimators according to the mapping of SenGupta et al. (2013).

Chapter 3 begins with the necessity of describing the extreme behaviour of wind and wave
features in terms of directionality in the ocean energy technology sector. In this context, the
foundations of the classical extreme value theory are presented and derivations of the peaks-
over-threshold method are mentioned. Additionally, threshold selection and declustering
methods are reviewed as their performance is assessed in the next chapter. The directional
extreme value model, as proposed by Jonathan and Ewans (2007), is also presented and some
comments are provided as regards the method of estimating the unknown parameters. A new
rational for the parameter estimation is recommended based on a penalised likelihood criterion,
which seems to be numerically stable for optimization, while a variety of methods as regards
threshold selection and declustering are considered to examine their effects on the performance
of the directional extreme value model.

In Chapter 4, numerical results from each of the above research directions are given in order
to illustrate the performance of the proposed methods and tools from different metocean data
sources. The first area of application deals with a thorough wind climate analysis and variability
by means of statistical tools; new features regarding especially wind climate variability are
highlighted. The second area is devoted to applications related with ocean energy assessment.
Parametric univariate and bivariate models are applied to wind speed and direction data and the
detailed evaluation leads to interesting findings as regards their performance. Parametric and
non-parametric bivariate models are also evaluated for wave energy flux and wave direction,
two parameters of high importance for the emerging wave energy sector. Results from the
calibration of wind speed and direction obtained from different wind data sources are also
presented by considering in situ measurements the reference source. In this section, a
methodology is proposed for the assessment of less reliable data sources while a new statistical
metric is introduced in the calibration of circular variables. The last section of this chapter
concerns the application of the directional extreme value model, presented in the previous
chapter, on wave data. Various numerical results are implemented in order to examine the
effects of this model under the consideration of different methods as regards threshold selection
and declustering techniques.

In Chapter 5, the coastal environment is examined by means of modelling wave action and
sediment transport through a dynamically coupled modelling system. Coastal erosion attributed
to wind-generated waves is examined under two perspectives. The first one considers storm
events acting for a short time window at a sandy beach, where a plethora of measurements was
available, that used not only to validate model results but for qualitative comparison purposes
of seabed level change as well. The second point of view takes into account the entire wave



Thesis outline

action throughout a typical year and introduces a cost-effective methodology, following the
rationale of wave input reduction techniques, for the estimation of seabed level. In this respect,
the wave conditions of the full time series are reduced to some representative conditions based
on the Shields criterion, used as a determinant for the initiation of sediment movement. The
results from this technique are compared against the full range of wave conditions and a
parallelism is made with the real situation encountered at the examined area.

Chapter 6 recapitulates the most important results of this thesis and provides further directions
for future research.

Finally, in the Annexes, some supplementary concepts and tools are provided. For the sake of
completeness, the descriptive statistics of directional variables are summarized (Appendix A),
various statistical tools (e.g. correlation measures, evaluation metrics) implemented in
metocean climate modelling studies are determined (Appendix B), the maximum likelihood
(ML) method for the estimation of the Generalized Pareto distribution is shortly presented
(Appendix C), the basic mathematical formulation of the numerical modelling package used
for the purposes of this thesis, MIKE 21/3 Coupled Model Flexible Mesh developed by the
Danish Hydraulic Institute, is defined (Appendix D), and the main categories of metocean data
sources along with the particular datasets that are analysed in Chapter 4 are provided (Appendix
E).
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Chapter 1

Chapter 1 Construction of probability distributions of linear
and directional variables

1.1 General

Metocean conditions have clearly a significant influence on a variety of random physical
processes that take place in the marine environment and interact with offshore/nearshore
facilities and coastal infrastructure. Appropriate probability models of metocean variables at a
location of interest are evidently a useful tool for the estimation of the corresponding conditions
and accurate quantification of their frequency of occurrence. The existence of long-term data
are necessary for the probabilistic modelling of metocean variables, which can be obtained by
measuring devices, remote sensors and numerical simulations (usually hindcasts).

A special application of long-term modelling of metocean variables refers to marine renewable
energy and coastal morphology, which are the main application areas in the present thesis.
Metocean variables (e.g. winds, waves, currents) are required for each lifecycle phase of a
marine energy project, from planning to decommissioning, in order to ensure safety and
reliability of the design of the structure and high performance during operation, while wave and
winds dominate in coastal processes and determine to a great extent beach morphology.

In this thesis, the analysis of the metocean variables is confined to linear variables of wind
conditions and sea states, including wind speed, significant wave height, and wave period
(energy or peak period) along with the corresponding directional features, i.e. wind direction
and wave direction, which are of great interest in ocean and coastal engineering applications.
The probability distributions of the available metocean data offer an essential understanding of
their characteristics and features, from which several descriptive statistics can be derived to
summarize the bulk statistical properties of metocean variables at different locations, and their
use is inevitable due to the randomness of the involved phenomena and the lack of thorough
knowledge from the data. Since such models cover the entire range of values of the examined
variable (both body and tail regions), they are preferred in cases a system depends on mean,
calm and storm conditions (e.g. beach response to wave forcing).

Joint probability distributions of different metocean parameters have received increasing
attention in order to perform a more realistic analysis due to the inherent complexity of the
above systems, facilitated by the recent development of numerical models and the direct
availability of long-term metocean data. Although several research studies have examined joint
statistical models for metocean variables and different approaches have been recommended for
the estimation of bivariate probability distributions, there seems to be no general agreement yet.
For instance, Vanem (2016) concluded that “multivariate modelling of met-ocean conditions
remains a challenge, even in the bivariate case” in the context of presenting bivariate models
for wave data.

This chapter deals with the probabilistic modelling of the abovementioned metocean variables
by means of univariate (parametric and non-parametric) models for both linear and directional
variables and bivariate (parametric and non-parametric) models for the joint description of
linear and directional variables, based on the marginal distribution of the corresponding
variables along with a dependence structure. The main motivations for working on the
theoretical aspects of this subject are the following: from a recent study (see Section 4.4), it has
been revealed that there is inconsistency of univariate models when the joint description
between two variables is examined. Specifically, it will be shown in the applications of Part 11
that the best univariate models of linear variables do not ensure that will also provide the best
fits when considering the joint description of linear and directional variables. Moreover, there
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Univariate case

are cases where the parametric bivariate models outperform the non-parametric ones under
various statistical measures, which gives rise to a more thorough examination when
probabilistic models are sought for such problems. This justification is strengthened by the
better statistical properties of the parametric models, their facilitation in making predictions and
easier estimation of the unknown parameters.

1.2 Univariate case

For the accurate description of metocean characteristics, the determination of the corresponding
probability density function (pdf) is essential in renewable energy applications. For instance,
the average power of a wind turbine is directly associated with the pdf of wind speed w,, and

the corresponding wind turbine power curve P, (u, ), obtained by fom f (uy) B, (u,,)du,,.

Given that the latter parameter is known rather accurately by the wind turbine manufacturer,
the significance of modelling wind speed as precise as possible is imperative in order to
minimize wind power estimation errors in the phase of wind resource assessment (Morrissey et
al., 2010; Ouarda et al., 2015; Rodriguez et al., 2015) and reach safer decisions on wind turbine
selection and economic evaluation of a wind farm.

In the relevant literature, wind speed is traditionally modelled as a two-parameter Weibull
distribution mainly due to its simplicity and flexibility; see, e.g. Fyrippis et al. (2010); Rocha
et al. (2012); Arslan et al. (2014). However, as was noted by Chang (2011), there are many
limitations, e.g. inefficiency in the accurate modelling of both calm winds (Drobinski et al.,
2015) and wind speeds higher than 14 m/s (Sarkar et al., 2017), while its use has not been
justified for modelling wind speed data; see also Jourdier and Drobinski (2017). Alternative
distributions have been proposed in a number of studies that examine a great variety of coastal
and offshore wind speed regimes, proving their superiority and thus providing better options
for fitting wind speed. Among them, there are: i) the conventional unimodal distributions with
three or more parameters that include Kappa (Ouarda et al., 2015; Ouarda et al., 2016), Wakeby
(Morgan et al., 2011), Johnson Sg (Soukissian, 2013), three-parameter Weibull (Stewart and
Essenwanger, 1978), Gamma (Dong et al., 2013), Lognormal (Alavi et al., 2016a; Alavi et al.,
2016b) and Nakagami (Alavi et al., 2016a; Dookie et al., 2018) distributions; ii) the multimodal
parametric distributions, which are used to adequately represent wind regimes with
particularities, such as the mixture distributions including the Weibull mixture (Carta and
Ramirez, 2007; Akpinar and Kavak Akpinar, 2009; Qin et al., 2012), the Weibull- and
Lognormal-Generalized Extreme Value mixtures (Kollu et al., 2012), the Normal mixture
(Chang, 2011), the Gamma mixture (Ouarda et al., 2015) while a variety of heterogeneous
mixture distributions has been assessed in Shin et al. (2016) and Ouarda and Charron (2018),
and the Maximum Entropy type distributions (Chellali et al., 2012; Zhang et al., 2014), and iii)
the non-parametric distributions (Jeon and Taylor, 2012; Zhang et al., 2013; Hu et al., 2016);
for instance, kernel density estimation is one of the most powerful techniques in terms of non-
parametric estimation. In essence, the kernel is used as a weighting function centred at the data
points and its extension (around the data points) is defined by a smoothing parameter. A recent
review of probability distributions for wind speed modelling can be found in Jung and Schindler
(2019).

Linear variables characterizing the wave climate, such as significant wave height Hg and peak
period T,, derived from a wave spectrum, are essential for the estimation of the design wave
loads on ocean and coastal structures. For instance, the operational performance of a wave
energy converter depends on the wave period while its survivability on wave height. In the
context of analysing these wave parameters through univariate probability models, various
models have been applied, including among others the Lognormal (Athanassoulis et al., 1994;
Haver, 1985), the three-parameter Weibull (Burrows and Salih, 1986; Soares and Henriques,
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1996; Vanem, 2016), the Gamma (Muraleedharan et al., 2009) and the Beta distributions
(Ferreira and Soares, 1999).

On the other hand, the analysis and modelling of directional (angular) variables belongs to the
realm of directional statistics that is dissimilar to the traditional linear statistics. In order to
accurately analyse and model directional data, directional statistical distributions have been
developed, with the von Mises (vM) distribution being among the most commonly used for
unimodal samples, which is equivalent to the normal distribution for linear data; see, e.g.
Mardia and Jupp (2009). For multimodal samples, finite mixtures of vM distributions have been
successfully applied in many studies with respect to wind and wave direction. For instance, in
Soukissian (2014), a finite mixture model of vM mixture distributions was applied for
modelling wind and wave direction from in situ measurements at three locations of deep and
intermediate water depths off the coasts of the United States. The same distribution type has
been proposed by Carta et al. (2008a) and Masseran et al. (2013) for the representation of wind
regimes with varying prevailing wind directions regarding two case studies in the Canary
Islands (Spain) and the study of wind energy potential for nine wind stations located in
Peninsular Malaysia, respectively. Another popular technique for generating circular
distributions is by wrapping a linear distribution around the unit circle, giving rise to many
wrapped versions of traditional probability models on the real line, such as Wrapped Normal,
Cauchy (Kato and Jones, 2013), Gamma (Coelho, 2011), Lognormal, Weibull (Sarma et al.,
2011) and t —distributions (Pewsey et al., 2007). Alternatives to the classical parametric
models, for circular data exhibiting multimodality and asymmetry, include the kernel density
estimators that were firstly considered by Hall et al. (1987) for spherical data, and Bai et al.
(1988) and Fisher (1989) for directional data. The Wrapped Gaussian kernel model has been
applied to ocean wave directional data by Athanassoulis and Belibassakis (2002).

1.2.1 Parametric and non-parametric models for linear variables

Parametric models

In the context of analysing linear data, parametric models have a dominant role in the
development of statistical inference. Such models are based on certain assumptions about the
examined dataset and represent just an approximation of the stochastic dynamics that generated
it. For instance, a specific pdf model is assumed and the corresponding unknown parameters
are estimated from the available dataset regarding inference on the unknown density model of
a linear (or directional) random variable (rv). The precision of the fitting depends on various
factors (e.g. sample size, area of sampled data, evaluation criteria); however, a failure in the
assumption leads to completely misleading conclusions.

As already mentioned, the range of mathematical models that have been examined in recent
years to describe metocean characteristics is broad. Apart from the simple univariate pdfs, the
mixture distributions, which are a linear combination of two or more pdfs with appropriate
weighting factors, have already been applied to various scientific fields. In this section, an
overview of the most representative univariate models, as regards metocean modelling and
analysis, for linear characteristics is presented. As regards the basic notation of this chapter,
upper case letters are used for (linear and directional) rv’s (e.g. X, ©) and lower case letters for
particular realizations of rv’s (e.g. x, 6).

Gamma (three-parameter) distribution (GAM)

The Gamma distribution is particularly useful for modelling long-tailed and positively skewed
data that can be encountered among others in hydrology and reliability studies. The pdf of a rv
X following a Gamma distribution is
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(x —c)* ' _x—c (1.1)

feam(x; ¢, a,b) = O b ,x>cab>0,

with a and b representing the shape and scale parameters, respectively. Also, c is the location
parameter and I'( ) is the Gamma function defined as I'(t) = f0°° xt~le *dx.

The corresponding cdf is

1

Foam(x; ¢,a,b) = O (%%), (1.2)

—C

where y (a, xT) is the incomplete Gamma function defined as y(s, x) = fox tS~letdt.

The expected value and the variance of a Gamma rv X are u =c + ab and o2 = ab?,
respectively. Several works can be found for the reliable estimation of the unknown parameters
for the three-parameter gamma distribution; see, e.g. Balakrishnan and Wang (2000); Bowman
and Shenton (2002); Tzavelas (2009). The Gamma distribution is also a generalization of the
exponential distribution for a = 1.

Generalized Extreme Value distribution (GEV)

The pdf of the Generalized Extreme Value distribution is

—_c\—1/a -
{%e{—(ﬁa%) ! } 1+ ax _ C) (1+a)/a, fora#0
. _ 1.3
feev(x; ¢, a,b) 1 {_%_e—(x—d/b} _ ()
o ' fora =0,

3

where c,a € R denote the location and shape parameters, respectively, and b > 0 the scale
parameter and with the following domain of definition

X—c
14+a >0,fora#0

x ER, fora # 0.

According to the value of the shape parameter, three types of distributions can be derived from
Eg. (1.3), namely the Gumbel distribution for a = 0 (type 1), the Fréchet (or inverse Weibull)
distribution for a > 0 (type 1), and the Weibull distribution for a < 0 (type Ill); for more
details, see also Section 3.1.

The corresponding cdf is

_ x—c -1/a
Foey(x; c,a,b) = e{ (1e75) } fora # 0 (1.4)

e{_e_(x_c)/b}, fora = 0.

The unknown parameters of the Generalized Extreme Value distribution can be estimated by
the maximum likelihood method (Katz et al., 2002) and the probability weighted moments
method (Hosking et al., 1985); for a review of the methods proposed in the relevant literature,
see Soukissian and Tsalis (2015).
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Johnson Sg distribution (JSB)

The Johnson Sg distribution was introduced by Johnson (1949) and is one of the three families
of the Johnson's system of distributions. The pdf of a Johnson Sg variable X is

¢ “glaran(E)]

d
x; c,a,d,b) = e )
frsa( ) V2r(x—c)(c+b—x) (1.5)
x €[c,c+b];b,d>0;c,a €R,

¢ and b denote, respectively, the location and scale parameters, while a and d affect the shape
of the distribution. In particular, skewness is increased while « is increasing, in absolute value,
and kurtosis is increased with increasing d. Eq. (1.5) is characterized by a bounded domain of
the variable and flexibility in the distribution form due to the two shape parameters, rendering
it applicable in many fields like meteorology (Tang and Lin, 2013) and hydrology (Wakazuki,
2013; Cugerone and De Michele, 2015).

The corresponding equation of the cdf is

X —C
F]SB(x; c aQ, d, b) =0 <a + dln (c-l-b——x)>' (16)

t2
with ®(+) denoting the Gaussian cdf defined as ®(x) = \/%f: e z2dt.

The parameters of this distribution can be estimated by applying the maximum likelihood
method, the method of moments, the percentile method and (linear or nonlinear) regression
methods (Phien and Jivajirajah, 1984; Scolforo et al., 2003; Zhang et al., 2003).

Lognormal (three-parameter) distribution (LGN)

The three-parameter Lognormal distribution is useful for modelling positively skewed and
long-tailed data. The pdf of a Lognormal variable X is

1 {_[ln(x—c)—bz]}
— ¢ 2a? x€(c,o):a>0beR, (L7)
(x —c)a2m (e )

with a, b and c representing the shape, scale and location parameters respectively.

fien(x; ¢,a,b) =

The corresponding cdf is
In(x—c)—»b
Fien(x; c,a,b) = @ <%> (1.8)

The expected value and the variance of a Lognormal rv X are u = ¢ + e?*%*/2 and ¢2 =
g2b+a® (ea2 - 1), respectively. Mathematical properties of this distribution are described in
Burges et al. (1975) and Johnson et al. (1995). The estimation techniques that are frequently
used for the parameter estimation of the Lognormal distribution are maximum likelihood
(Stevens, 1992; Hirose, 1997; Basak et al., 2009) and method of moments (Cohen and Whitten,
1980; Hoshi et al., 1984).
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Kappa distribution (KAP)

The four-parameter Kappa distribution, introduced by Hosking (1994), is a generalization of

many other three-parameter distributions; for instance, for d = 1 and a # 0 the Generalized

Pareto model is obtained, for d = 0 and a # 0 the Generalized Extreme Value model, for d =

—1and a # 0 the Generalized Logistic distribution and for d = 1 and a = 0 the Exponential
distribution. Its pdf is defined as

(1/a)-1

fKAp(x; caQ, d, b) = %(1 _y> [FKAP(X)]l_d,b > 0, (19)

with the following domain of definition

(c+b(1—d“1)/anSc+b/a,ifd>0,a>0;

c + blogd < x < oo, ifd >0,a=0;
c+b(l—-d¥/a<x<ow, ifd>0,a<0;
—wo<x<c+b/a, ifd <0,a>0;
—0 < x < 0, ifd <0,a=0;
c+b/a<x< m, ifd <0,a<0.

The corresponding cdf is

1/d

1/a
Feap(x; c,a,d,b) = [1 —d (1 - @) ‘ _ (1.10)

By applying the method of L-moments for the estimation of the unknown parameters, the kappa
distribution has been frequently used in hydrological studies including extreme value analysis
(Park and Jung, 2002; Murshed et al., 2014; Kjeldsen et al., 2017).

Wakeby distribution (WAK)

The five-parameter Wakeby distribution, initially introduced by Landwehr et al. (1979a);
Landwehr et al. (1979b), is a generalization of other less complex, such as Generalized Pareto
and three-parameter Exponential distributions, and it has a great variety of shapes making it
particularly useful for various applications. The pdf is given by using the following relation
provided by Johnson et al. (1995)

s+1
1-(1-HR X
fwak(x; ¢,g,a,d,s) = ( WAK(aEB ,a+s>0ora=d= 111
g(1 = Fyax()) " +d (111)
s=0;a=0,ifg=0;5s=0,ifd=0;d >20;,a+s=>0;,g+d =0,

with the following domain of definition

c<x < oo, ifs>0,d > 0;

g d
c<x<c+=——,ifs<0ord=0.
a s

where c, g, a are the shape parameters and d, s are the location parameters.
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The corresponding cdf has no explicit analytic form and is defined by means of its quantile
function

d
x(F)=c+ % [1--F=<[1-A=F)7]LF = Fyak(): (1.12)
The main techniques for the estimation of the parameters are maximum likelihood, method of

moments and probability weighted moments (Griffiths, 1989; Rao and Hamed, 2000) while
Oztekin (2011) proposed least squares method.

Weibull (three-parameter) distribution (WEI)

The three-parameter Weibull distribution, a generalization of the two-parameter Weibull
distribution, has an extended range of applications due to its high flexibility; for an extensive
review of applications; see Murthy et al. (2004). The pdf of a three-parameter Weibull random
variable X is

X =\l _x—cy®
- ) e (b),xe[c,oo);a,b>0;cE]R, (1.13)

. b _a
fwel(x; ¢, a, )_E(

with a, b and c representing shape, scale and location parameters, respectively. The
corresponding cdf is

x—c\¢
Fywei(x; ¢,a,b) =1 — e_(T) . (1.14)

The most common method for the estimation of the Weibull parameters is the maximum
likelihood estimation (Balakrishnan and Kateri, 2008) although some deficiencies have been
identified (Cousineau, 2009). Alternative estimation methods are the quantile estimation (Wang
and Keats, 1995), the moment estimation (Cran, 1988; Bartolucci et al., 1999; Akdag and Guler,
2018) and kernel density estimation (Markovi¢ et al., 2009).

Now, let us assume that the pdf f(x) of a rv X is expressed in the form of a linear mixture as
follows

) =) ayf(x:9),
j=1

where the quantities w;, with Zlea)j =1and 0 <w; <1, for j=1,..,k, denote the
weighting factors corresponding to the components of the linear mixture, ; is the set of
parameters corresponding to the j —th pdf and f (x; 19]-) is the pdf of the j —th component of the
mixture. The following mixture distributions refer to this type of models. The unknown
parameters of these distributions can be estimated by maximizing the corresponding log-
likelihood function under the restriction that Zf=1 w; = 1.

Gamma-Weibull mixture distribution (GW)

The pdf of a Gamma-Weibull distribution is given by
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fGW(x; alfbllaZJbZI(‘))
x _x a, [x\%~1 _(x\%
w———Fge 1+ (1 —a))—2<—) e (bz) ) (1.15)
I'(ap)b; b, \b,

a,—1

with w € (0,1) denoting the weighting parameter. The corresponding cdf is
FGW(x; ay, bl! a, bZ! 0)) = wFGAM(x; as, bl) + (1 - w)FWEI(x; as, bZ)! (116)

with ¢ = 0 from Egs. (1.2) and (1.14), and w € (0,1) the weighting parameter.

Truncated Normal mixture distribution (NN)

For a normal density function with location and scale parameters c, b, respectively, i.e.

1 _(x—0)?
(x; ¢,b) = e 2v2 ,x € R;b? > 0;c ER, (1.17)
In V2mb?
the singly truncated (from below) normal mixture distribution (for x = 0) is defined as follows,
@(x;¢q,by) @(x; ¢, by)
(x; c1, by, e, b, 0) =0———+ (1 —0)—————, (1.18)
S v I(cy,by) 1(cz, by)

o]

with o € (0,1) denoting the weighting parameter and I(c,b) = |,

o @(x;c,b)dx. The
corresponding cdf is given by

FNN(x; €1, bl; Cy, b2; (1))
X

_ j @(x; ¢1,b1)
=w | ———
1(cy,bq)

dx + (1 — w) f —<Pl(zfci:2l;2b)2) dx. (1.19)
0

Weibull (two-parameter) mixture distribution (WW)

The pdf of the Weibull mixture distribution is

a X a;-1 _(x ai
faw (6 a1, by, az, by, @) = w_l(_) o~ (57)
by \b;

o (1.20)
+(1—w)2(£> 16_(5) ,

where a4, b, are, respectively, the shape and scale parameters of the first Weibull component,
a,, b, are the corresponding parameters of the second Weibull component and w is the
weighting parameter. The corresponding cdf is given by

Fyw(x; ay, by, az, by, w) = wFwei(x; aq, b1) + (1 — w)Fygi(x; az, by), (1.21)

with ¢ = 0 from Eq. (1.14) and w € (0,1) the weighting parameter.

Weibull-Generalized Extreme Value mixture distribution (WGEV)

The Weibull-Generalized Extreme Value mixture distribution is defined as follows
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a (x a;-1 _(x\1
fWGEV(x; as, bl) ¢ Ay, bZ' w) =w b_ (b_) e (bl)
1 1

1 (- x—c\~t/az x — ¢\~ (1+az)/a;
+(1 - a))b—e{ (1+e2 b, ) } (1 + a, > )
2 2

(1.22)

)

where a4, b; are the shape and scale parameters, respectively, of the Weibull distribution, and
a,, b, and c are the shape, scale and location parameters, respectively, of the Generalized
Extreme Value distribution. Its cdf is

Fweev(x; ay, by, ¢,az, by, w) = wFygi(x; ag, by) (1.23)
+(1 — w)Fgev(x; ¢, az, by),

with ¢ = 0 from Eq. (1.14) and w € (0,1) the weighting parameter.

Non-parametric models

Non-parametric methods, contrarily to the parametric ones, do not rely on strong parametric
assumptions but rather on fewer, or less stringent, conditions, rendering this estimation method
more flexible since the pdf is constructed according to the information derived from the
available data sample and not defined by a finite set of parameters. Non-parametric techniques
tend to be preferred in cases where the pdf of the data is unknown or cannot be easily
approximated (e.g. due to the small sample size), and can be useful when analysing data with
outliers, which might be nontrivial with a parametric approach. Nevertheless, hon-parametric
methods are not as optimal as parametric methods in case the assumptions of the latter ones
hold.

Kernel density function (kdf), as a member of a non-parametric approach, is widely applied in
non-parametric statistical estimation in data analysis and other research areas. The main idea of
the kernel function is to act as a local weighting by attributing at each random variable X a
weight based on the distance of observations y;, i = 1, ...,n, from a random sample to each
fixed point x € R; the local weight increases with decreasing distance. In the univariate case
and given n observations y;, i = 1, ..., n, the general form of the standard kdf, originated from
Rosenblatt (1956), is defined as

fxC; v, h) = n_lhz K (x ;yi), (1.24)

i=

=

where K (+) is the kernel (or window) function determining the shape of the weighting function,
h is the bandwidth (smoothing parameter or window width) of the estimator, which is a positive
parameter that represents the variance of the kernel and thereby controls the smoothness of the
estimator, and n is the sample size.

Any symmetric function that satisfies the following conditions can be used as a kernel function:
i. K(x;y,h) =0 forall x, i.e. is a non-negative function
i. [K(;y h)dx=1

iii. [ xK(x;y, h)dx = 0, because of symmetry
iv. 0 < [x2K(x;y,h)dx < o, i.e. is of second order.
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The most commonly used symmetric kdfs are the following: Gaussian, Uniform, Triangular,
Epanechnikov and Biweight. However, such kernels are ideal provided that the support of target
density f is unbounded; otherwise fx is biased at the boundaries, also known as ‘spill-over’
effect. To overcome this problem in the case of bounded (from below or/and above) data, where
standard symmetric kernels tend to underestimate the density at the boundaries, various
methods have been suggested; for instance, transformations techniques (Marron and Ruppert,
1994), reflection and replication methods (Schuster, 1985; Muller, 1991; Karunamuni and
Zhang, 2008), boundary kernels (Gasser et al., 1985) and adaptive kernels (Botev et al., 2010);
a list of relevant methods on this topic can be also found in Karunamuni and Alberts (2005) and
Marchant et al. (2013). In this thesis, the approach of using asymmetric (skewed) kernel
functions is followed to construct the kdfs, i.e. kernels that matches with the support of f.

The most popular asymmetric kernel estimators include the Gamma kernel estimators (Chen,
2000), the Beta kernel estimators (Brown and Chen, 1999), the Inverse and the reciprocal
inverse Gaussian kernel estimators (Scaillet, 2004) and the Birnbaum-Saunders kernel
estimators (Jin and Kawczak, 2003). Moreover, Silverman (1986) has proposed Lognormal
(and Gamma) kernels, with the shape parameter controlling the smoothing (lgarashi, 2016).
Among the most appealing properties of these kernels are the increased precision of the density
estimation close to the boundary, they are boundary bias free (i.e. the bias is of the order of
0(h) near the boundaries and inside the support) and their adaptive smoothing by variable
kernel shapes according to the location of the data points y; more details on asymmetric kernels
can be found in the recent book of Hirukawa (2018).

In the case of asymmetric kernels, the following additional requirements must be fulfilled so

that the estimator of f(x) remains asymptotical unbiased as n — oo and nh — oo, for all x that
belong to the support of f(x), say S:

i lim Jo Ky,h)dy =1
i lim Jo Ky, )y —x)dy =0

i : 24y —
iii. }ll_I)l’(l)fS K(x;y,h)(y —x)?dy =0

As mentioned in Athanassoulis and Belibassakis (2002), the positioning parameter y is the
solution of

0K (x) _ 0

1.25
I : (1.25)

i.e. is defined as the most probable value of the kernel function, while the bandwidth parameter
h is the standard deviation of the kdf with respect to x. Let it be noted that regarding the
implementation of the kdfs, the positioning parameter y coincides with the values of the data
sample while the bandwidth h can be derived by applying the L,-distance criterion.

Based on the two-parameter Gamma distribution (with ¢ = 0 in Eq. (1.1)), the expressions of
the shape and scale parameters, a and b, respectively, of the Gamma kernel in terms of y and
h are the following

a=% 2+(%)2+j(2+(%)2) —4|and b =ﬁ. (1.26)
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In a similar way, the Lognormal kernel, defined by means of the two-parameter Lognormal
distribution (with ¢ = 0 in Eq. (1.7)), has the following expressions for the shape and scale
parameters, respectively,

a =In(Dy) and b = {/In(D), (1.27)
. . . h\?2
where D is the positive root of the equation D* — D3 — (;) =0.

For sufficiently large n, the accuracy of the kernel density estimation is more sensitive to the
bandwidth compared to the kernel function. The degree of smoothness of the estimated density
is determined by the bandwidth; a small bandwidth yields a tight fit with spikes at the
observations while a large bandwidth provides a smooth fit. In order to find the optimal
bandwidth so that the obtained kernel density can adequately represent the underlying
population, it is necessary to select a measure of distance that assesses the performance of £ by
comparing it with the true density f. Although many methods have been recommended, the
non-parametric statistical community agrees that there may not be a convergence as regards the
perfect method for the selection of the optimal bandwidth. The generally accepted performance
criteria are the integrated squared error (ISE) and its expected value, the mean integrated
squared error (MISE), given by

ISE = [{fx(x) — f(x)}?dx and MISE = E[[{fi(x) — f (x)}*dx], (1.28)
respectively.

Two different classes can be roughly distinguished, which asymptotically coincide: i) the cross-
validation methods that try to minimize the former measure, and ii) the plug-in methods that
try to minimize the latter measure; see also the review of Heidenreich et al. (2013). In the case
of asymmetric kernels, the plug-in methods are not directly applicable because they require a
pilot estimate of the bandwidth; for more details, see Loader (1999) and Jin and Kawczak
(2003). Nevertheless, Hirukawa and Sakudo (2014) proposed the implementation of plug-in
methods for choosing the smoothing parameter using the Gamma and the Modified Gamma
kernels. On the other hand, the cross-validation methods for asymmetric kernels have been
applied among others by Jeon and Kim (2013) and Marchant et al. (2013).

1.2.2 Parametric and non-parametric models for circular variables

Parametric models

The von Mises (vM) distribution was introduced by von Mises (1918) and is also referred to as
circular normal distribution due to its analogy to the Gaussian distribution for linear variables.
The vM distribution belongs to the exponential family and is defined as follows:

excos0-) g € [0,2m), > O,u € [0,27),  (1.29)

Fo0; 1) = 5es

where I,(x) is the modified Bessel function of the first kind and zero order, i.e. Iy(k) =

L (27 prcosb g (or using a power series expansion ¥ o — (£ # is the location parameter
2m Y0 gap p =012\ U p

and x is the concentration parameter around p. The corresponding cdf does not have closed
form and is calculated by numerical integration of Eq. (1.29), i.e.
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6
Fom(6; px) =f fom(w; w,©)dw
0

0ly() + 2 35, 2O IPO 1) (%0
= O] ,0 € [0,2m).

For k = 0, the circular Uniform distribution is obtained, which is invariant under rotation and
reflection (Mardia and Jupp, 2009). The pdf of this circular distribution is

1

fu() =5=,6 €[0,2m). (1.31)
21

For the estimation of the von Mises parameters, usually the maximum likelihood method is

performed, which is rather straightforward. An alternative method is to use non-parametric
techniques, e.g. based on kernel approaches, as is presented at the end of this subsection.

From the wrapping of the Cauchy distribution around the unit circle, it results the wrapped
Cauchy distribution with pdf

1 [ee]
. = — 14 — .
fwe(O; 1 p) or) 112 Z pP cosp(6 — ) ¢,0 € [0,2m);k = 0, (1.32)
p=1
u € [0,2m),

where u is the location parameter and p controls the concentration of the model. This
distribution is symmetric and unimodal and has some desirable mathematic properties as
discussed in Kent and Tyler (1988). Based on the trigonometric moments in the characteristic
function of @, a simplified expression of Eq. (1.32) is obtained by

1—p?

1+ p%—2pcos(6 —u)] ,p €10,1]. (1.33)

fwe(8; wp) = 2

WC(u,p) tends to the Uniform distribution as p — 0 while as p — 1, it tends to a point
distribution at u.

An analogous wrap around N (u, %) gives the wrapped Normal distribution WN( y, p) with
pdf

1 > _(8—p+2mm)?
fwn(6; u,0) = E e 202 ,0 €[0,2m);0 > 0,
oV2an

m=—0oo

u € [0, 2m),

(1.34)

o2

with u denoting the location parameter and o2 = —2logp = p = e~ z. Another useful
representation of Eq. (1.34) is in terms of the characteristic function of the normal distribution

1 (o0}
fan(@; 1.p) = 5142 ) pP* cosp(0 — ) . p € [0,1]. (1.35)
p=1

When o2 < 2, the pdf of WN( , p) can be approximated adequately for m = 0 in Eq. (1.34)
or by the first three terms of the infinite series of Eq. (1.35) when o2 > 2m (Pewsey et al., 2013;
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Mardia and Jupp, 2009). Similar to the Wrapped Cauchy distribution, WN( u, p) is unimodal
and symmetric about u and tends to the Uniform distribution as p — 0 while as p — 1, it tends
to a point distribution at p.

For multimodal angular variables encountered in engineering applications, a finite mixture of

VM distributions is implemented. The vM mixture pdf of a random angular variable @ is defined
as the weighted sum of N simple vM distributions, i.e.:

ki cos(0—p;) . e > ()
fva(9 HJ,K].w]) ZZT[IO(K]) J i,0,u € [0, 2m); Kk; = 0; (1.36)
€ [0,1],
where N is the number of components, k; and y;, j =1,2,..,N, are the individual vM

distribution parameters, and w; are (weighting) quantities with sum equal to one. The
corresponding cdf for the von Mises mixture distribution is

N 0.)] {910 (K]) +2 Z;0=1 IP(KJ) Slnp(e — ’u])}

p
ZnIO(Kj)

Fouom(6; 1y, kj, w)) = (1.37)

=1

The parameters of the finite mixture von Mises model are estimated using the expectation-
maximization (EM) algorithm for maximum likelihood estimation; for more details, see, for
example, Ch. 4 of Jammalamadaka and SenGupta (2001), Mooney et al. (2003) and Banerjee
et al. (2005).

Non-parametric models

The directional variables in terms of kernel density functions can be efficiently modelled by
applying the Wrapped Normal distribution with the following expression for its density

1 n
fiown(B5 ) = — > Kun (63 i, ), (1.38)
i=1

_(6—yp-2mm)? ) .
with Kyy = ﬁz;‘;:_we zr2 | which can be accurately approximated by the three

central terms of the sum, i.e. for m = —1,0,1, for moderate values of h (Athanassoulis and
Belibassakis, 2002).

An expression analogous to Eq. (1.24) for kernels dealing with circular data in the
q —dimensional sphere S was introduced by Hall et al. (1987). For the univariate case, i.e. for
q = 1, the circular kernel density estimation from a random sample {1;}i= is given by

£ (6; B = @Z M(R* cos(6 — 7)), 6, € [0,2), (1.39)
i=1

where M (6;, h*) is the circular kernel, ¢, (h*) is a constant such that fxk is a density and h* is
the concentration parameter with a behaviour similar to the inverse of the smoothing parameter
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h. Small values of h* lead to over-smoothed circular densities while large ones provide under-
smoothed estimators (Oliveira et al., 2012).

Few studies have been dedicated to the appropriate selection of the smoothing parameter h* in
circular kernel density estimation. For instance, Hall et al. (1987) suggested the use of cross-
validation bandwidths while Taylor (2008) proposed a rule of thumb for the selection of
bandwidth assuming that the underlying population follows a vM distribution; however, the
performance of the latter bandwidth may be rather unreliable if the involved data set exhibits
characteristics such as multimodality and skewness. Oliveira et al. (2012) introduced a new
plug-in rule procedure for bandwidth selection, following the simple idea proposed by Taylor
(2008), that is based on the use of mixtures of vM distributions allowing thus more flexibility
in the underlying model.

1.3 Bivariate case

Bivariate probability distributions seem to be a more realistic and complete approach in ocean
and coastal engineering (e.g. for a detailed long-term analysis) since winds, waves and currents
are generally non-independent variables. Numerous studies have been dedicated to the joint
description of two linear rv’s such as significant wave height and wind speed since wind and
wave loads are crucial when assessing environmental risks for a marine structure (Nerzic and
Prevosto, 2000; Zhai et al., 2017), and wave height and period as the sea state at a particular
location depends primarily on these two wave parameters (Haver, 1987; Ochi, 1992;
Muraleedharan et al., 2015; Vanem, 2016). On the other hand, the joint description of linear
and circular variables is gaining ground since the knowledge of directionality and the
corresponding bivariate stochastic structure (including one linear and one directional variable)
has proved to be essential, among others, for optimizing the layout of an offshore wind farm
(Feng and Shen, 2015), and for the design of coastal and offshore structures (in terms of safety,
stability, strength, etc.) (Jia, 2011; Wei et al., 2017).

In this thesis, the construction of the bivariate distribution functions of the examined metocean
parameters is accomplished through three different families of distributions in the parametric
case, i.e. two parametric copulas, the Farlie-Gumbel-Morgenstern and the Plackett families of
distributions, and the Johnson-Wehrly model, and the multiplicative kdf in the non-parametric
case. A common feature to all bivariate models (parametric and non-parametric) is that their
density functions rely on the corresponding univariate marginal distributions, which are known
beforehand (coming from the marginal data). Moreover, all parametric bivariate models, apart
from the marginal distributions functions, rely also on an additional parameter that quantifies
the correlation/dependence of the variables.

In marine energy related applications, the Farlie-Gumbel-Morgenstern family has been
implemented by Erdem and Shi (2011) for the estimation of the bivariate distribution of wind
speed and direction, and Qu and Shi (2010) applied the same family for the joint description of
wind speed and air density while Carta and Mentado (2007) examined the same variables by
applying the Plackett family. Other studies where the Plackett family has been implemented in
applications related to wind energy assessment are those of Carta and Velazquez (2011) for the
joint description of wind speed at a candidate and reference site in the context of developing a
new Measure-Correlate-Predict methodology, and Bai et al. (2016) for the joint description of
wind power and wind speed while the same model has been implemented for marine
applications dealing with wave data such as Athanassoulis et al. (1994), Lucas and Soares
(2015) and Vanem (2016). The Johnson-Wehrly model has been implemented in Carta et al.
(2008b), Qin et al. (2010), Erdem and Shi (2011), Soukissian (2014), Basile et al. (2015),
Soukissian and Karathanasi (2017) and Zhang et al. (2018) for the description of wind speed
and wind direction. In Soukissian (2014), the same model was also applied for the joint
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description of significant wave height and wave direction. In the recent work of Han et al.
(2018), the performance of the Johnson-Wehrly model was compared with the multiplicative
kdf for the joint modelling of wind speed and direction based on four evaluation metrics from
four wind observations sites in China. Asymmetric distribution models based on copulas were
also applied by Fazeres-Ferradosa et al. (2019) to obtain the joint cumulative distribution
function of significant wave height and up-crossing mean wave period.

1.3.1 Parametric models for linear-circular variables

The common characteristic of these families is that they take explicitly into consideration the
marginal distribution of the corresponding variables along with their dependence structure.
Well-known families of bivariate distributions are those of Fréchet (Fréchet, 1951), Johnson
and Wehrly (Johnson and Wehrly, 1978), Mardia (Mardia, 1970b), Farlie-Gumbel-
Morgenstern (Morgenstern, 1956; Farlie, 1960) and Plackett (Plackett, 1965) that are both
particular expressions of copulas. The concept of copulas was first introduced by Sklar (Sklar,
1959) and is essentially based on the construction of multivariate distribution models
characterized by the corresponding (given) marginal distributions of the involved random
variables and a copula function indicating their dependence structure. This interesting
characteristic of copulas (i.e. coupling the dependence of random variables with their marginal
behaviours) is ideal for the construction of families of bivariate distributions (Fisher, 1997). In
this section, the Johnson-Wehrly, the Farlie-Gumbel-Morgenstern and the Plackett families of
distributions are described.

Johnson-Wehrly model (JW)

The joint pdf fj (x, 6) is expressed

fiw(x,0) = 2nfu () fx(x)fo(0),x € R; 6 € [0, 2m), (1.40)

where ¥ = 2n[Fx(x) — Fo(6)], ¥ € [0,2m) and fyu () is the pdf of the rv defined by the

previous equation, which represents the dependence structure between the rv’s X and 0.

Following Carta et al. (2008b) and Soukissian (2014), fy(¥) is a rather smooth function that
can be described through a vM mixture pdf comprising of two components. A distinct feature
of JW model is the fact that it is constructed directly for the joint description of linear and
angular variables, whereas Farlie-Gumbel-Morgenstern and Plackett families are general-
purpose bivariate distributions. The elegant and closed form expression of JW model, provided
by Eg. (1.40), along with the fact that any marginal distribution can be considered, renders the
corresponding bivariate distribution very appropriate candidate for the description of the
wind/wave climate in an area. A relative drawback of this model is that the corresponding
bivariate cdf can only be numerically estimated, since there is no analytic form.

Farlie-Gumbel-Morgenstern model (FGM)

The Farlie-Gumbel-Morgenstern model belongs to the family of FGM copulas that was first
introduced by Morgenstern (1956) and extended by Farlie (1960); see also Ch. 44 of Kotz et al.
(2000) for a more detailed introduction to multivariate distributions, including FGM
distributions. A thorough presentation of the corresponding theoretical background can be also
found in Athanassoulis et al. (1994).

The bivariate pdf of the FGM model is given by
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fram(0) = fx(fo(OI1 + rroul2Fx (¥) = 11[2Fe(0) — 1 x €R; 41y
9 € [0,2m), :

where rggM is the statistical association parameter between the rv’s X and @. Let it be noted
that the bivariate FGM distribution is valid when there is a relatively weak dependence between
the examined variables; in turn, the permissible range of the linear-circular correlation
coefficient ryo between X and @ is —1/3 <rye < 1/3 (Long and Krzysztofowicz, 1992;
Guven and Kotz, 2008).

The corresponding bivariate cdf is provided through the following relation
Fegm(x, 8) = Fx(x)Fo (0){1 + 3rpem[1 — Fx()][1 — Fo (6)]}- (1.42)
The sample version of rycy IS

2 2
2 _ Txc + x5 — 2Ty cTxsTes
TeM =

(1.43)

)’

1-12
where

xc = pl(xy, cos 6,), (x2, c0s 63), .., (xp, cos 6y,)]
Txs = p[(‘xll sin 91)! (xZI sin 92)! ey (xn; sin 91’1)] (144)
7.s = p[(cos @, ,sinb,), (cos B, ,sinb,),.., (cos b, ,sin6,)],

and p denotes the Pearson product-moment correlation based on the available sample. In Eqg.

(1.44), x; and 6;, i =1, ...,n, denote realizations of the linear variable X and the angular
variable @, respectively.

Plackett model (PLA)

The Plackett model is also a member of the copula families. Though more complicated than the
other systems, it is selected for the present analysis since it is valid for any bivariate random
variable (X, ©) with —1 < rp;a < 1. A detailed presentation of the corresponding theoretical
background can be found in Athanassoulis et al. (1994).

The joint pdf fppa(x, 6) of the rv’s X and @ is given as a function of the two marginal pdfs and
cdfs fy(x), fo(0) and Fx(x), Fy(0), respectively

frra(x, 0)

=Ypfx(x)fo(0)
x €R; 0 € [0,2m),

(@ = DIFx(x) + Fo(6) = 2Fx ()Fp(0)] + 1
[S2 — 4p (Yp — 1) Fx(x)Fg(0)]3/2 ’

(1.45)

where p > 0, p # 1 isa ‘correlation-type’ parameter between marginal distributions, and S
is given by

S =14 Wp — D[Fx(x) + Fo(0)]. (1.46)

The corresponding bivariate cdf is
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3_W5?—4¢A¢p—1ﬂkwﬂ%WI (1.47)

Fpra(x, 6) = 2, = 1)

The estimation of 1, parameter can be made with various methods (Kotz et al., 2000). For the
estimation of this parameter from the available data, a numerical approach is provided by the
maximum likelihood estimator (Nelsen, 2006). An alternative solution is based on the cross-
product ratio that provides the following estimate for

_ P1P4
P2P3’

Vp (1.48)

where p; = Pr[X <x,0 <0], p, =Pr[X <x,0 >0],p; =Pr[X >x,0 <6], and p, =
Pr[X > x,® > 0] are the observed frequencies of the corresponding cells in the (x, 8) —plane.

An attractive property of the Plackett model refers to the estimation of yp from the observed
frequencies of the four quadrants, determined by the lines that are parallel to the axes and pass
through the sample medians of the two rv’s X and @ (Mardia, 1970a; Nelsen, 2006). Eq. (1.48)
can be written as

- DiP4
Yp = ——, (1.49)
i D2P3

where p;1, p3, p3, ps are defined like the observed frequencies in Eq. (1.48), but x and 6 are
substituted by the two sample medians med(x) and med(8), respectively. Moreover, Mardia
(1970a) proved that this estimator minimizes the variance of }p.

1.3.2 Non-parametric models for linear-circular variables

The extension of the univariate kernel density in the bivariate case is achieved by means of the
multiplicative (or product) kernels. This specific family of multiplicative kdfs is based on the
product of the univariate kdfs, provided as follows:

n d
1
fr() = Ez nthj(xj - Xij). (1.50)

i=1 j=1

where thj(-) is the kernel density in the j —th component of the d —variate df with bandwidth

h;; see also Sec. 2.9 of Hirdle (1991). In the bivariate case and based on the examined linear
and directional variables in this thesis, the above equation is simplified to

n

fe,8) =~ > Ke(X; Xis DK (0 6, 1°), (151)

i=1j=1

S|

where Ky can be the Gamma or the Lognormal kernel.
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Chapter 2 Regression analysis & calibration of linear and
directional variables

2.1 General

The collection of metocean information at an offshore/nearshore location can be achieved by
measuring devices (e.g. oceanographic buoy), remote-sensing devices and numerical models at
frequent temporal intervals and appropriate spatial scales depending on the purposes of the
study. However, each data source is characterized by strengths and limitations, as described in
Appendix E, due to the inherent uncertainties of each source. In situ measurements provide
currently metocean data of the highest quality available; thus, they are regarded as ‘ground
truth’ and are used for validation against the other two data sources in the area of interest, after
appropriate temporal and/or spatial collocation (Schmidt et al., 2017; Young et al., 2017).
Usually, prior to validation lies calibration.

The impetus for this analysis derives from the necessity of calibrating the less accurate data
sources rigorously in order to obtain more reliable information as a prerequisite in a range of
applications, such as wind and wave climatology, investigation of trends and design of marine
structures. For instance, over- or under-estimation of wind and wave variables leads to changes
in the estimation of the corresponding potential and the extreme values. Taking for granted that
all the above data sources contain errors, calibration techniques should not rely on conventional
linear regression analysis, which is the primary theoretical background for such applications,
due to violation of assumptions. Thus, a more realistic and proper approach is to consider a
regression model that takes into account errors in both variables in order to provide a statistical
relationship between the less reliable data source (predictand) and the more accurate one
(predictor). The so-called measurement error model serves towards this goal (Section 2.2) while
robust regression models are addressed as they are less sensitive in the presence of outliers
(Section 2.4), which may also distort the results of a regression model.

Despite the significance of the accurate determination of directional variables in ocean
engineering applications, calibration techniques are rarely adopted for this type of variable. In
this thesis, the method described for the correction of directional characteristics is based on the
simultaneous minimization of the vertical and horizontal distances from each point to the
regression line (Sections 2.5 and 2.6). The performance of each examined regression/
calibration model proposed in this thesis is assessed in real data samples of wind and wave data;
see Section 4.3.

2.1.1 Background
Fundamentally, regression analysis is about understanding how the conditional distribution of
a random variable Y changes for samples determined by possible values of one or more rv’s X.

Mathematically, the regression of Y on k rv’s X3, ..., X}, is written in the form

E[Y|Xy, .., Xx] = Bo + B1 X1 + =+ + B Xk
K
= Bo + ZﬁiXi:
i=1

where Y, the variable of interest, is called response, predictand or dependent variable and X;,
i =1, .., k, the explanatory variable, is called covariate, regressor, predictor or independent.

30



Chapter 2

The use of terms ‘dependent’ and ‘independent’ is avoided so as to prevent any confusion with
dependence/independence of rv’s in the probability sense.

Typically, the aim of a regression model is to describe the statistical relation, if exists, between
variables or predict the response variable for values of the covariates. Obviously, the regression
model should not be viewed as the “true” model (i.e. a model that completely explains the
variation in the response variable); it is most realistic to accept that a regression model verifies
our theory about which variables strongly influence the response variable. Given a data sample
of independent observations, the parameters that characterize the relation of these variables are
usually estimated by the least-squares or maximum likelihood method.

For the sake of convenience and clarity, first some notation is introduced that is necessary
before going through the various regression models that is based on the distinction of the
covariates to fixed constants and random values. Observed, also called manifest or indicator,
variables are denoted by uppercase Roman letters, say X or Y, while unobserved, also called
true, variables are denoted by uppercase Greek letters, say = or H. Analogously, each realization
of an observed (unobserved) variable is denoted by lowercase Roman (Greek) letter, say x; or
yi ¢in), i =1,2,..,n. Error terms, often called random or stochastic components, are
denoted by the lowercase Greek letters € and §. The unknown regression parameters (or
coefficients) are denoted by the lowercase Greek letter 8, k = 0,1,2, ..., r, depending on the
number of covariates that are considered in the model.

In the standard (population) linear regression, it is assumed that the covariates, either fixed or
random, are measured without error and the corresponding model takes the form

Y= ﬂo + [315 + &, (21)

where ¢ is the error term, often written as e = Y — E[Y|Z], which essentially contains not only
the random components of the response variable but also accounts for the effects of the
covariates that are not included in the regression model (Berry, 1993). When a sample of
observations (¢, 1), ..., (&4, ) is available from the population, the most frequently used
method to estimate the unknown parameters S, (intercept) and S; (slope) is least-squares (LS).
When certain assumptions from the regression theory hold (see Section 2.3), then the Gauss
Markov Theorem ensures that the ordinary least-squares (OLS) estimators provide the best!
linear unbiased estimates, known briefly as BLUE, for the regression coefficients. However,
for linear regression models with errors in the covariates, it is known that the least squares
method yields biased? and inconsistent estimates for the involved parameters leading to
erroneous conclusions; see also p. 3-4 of Fuller (1987). On the other hand, when only the
response variable is observed with error, then the estimator is unbiased.

2.2 Measurement error models

As the title of this chapter implies, in this chapter reference is made to statistical models that
take into account variables containing errors of any origin, a situation that is valid almost in
every discipline. In the context of this thesis, measurement is the realization of a set of
operations in the field made under (unspecified) external conditions in order to quantify the
value of a physical parameter by means of the appropriate equipment and material. By the term
“measurement error”’, two generic types of errors are usually included: i) systematic (or non-
random), and ii) random (or stochastic) errors. The former error is mainly attributed to an
inherent inaccuracy of the system (e.g. imperfect calibration of the measuring device) yielding

1 “Best” among the class of linear unbiased estimators.
2 The bias depends on the magnitude of the measurement error and the correlation between the covariate.
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shifted measurements from the true value by a constant amount, and in turn biased OLS
estimators, while the latter is unpredictable from one measurement to another. Measurement
error models (MEMs) are often encountered in the literature as “errors-in-variables models”.
MEMs have been systematically examined by numerous researchers suggesting techniques for
fitting regression lines when both variables are measured with error; see, e.g. Wald (1940),
Halperin (1961), Riggs et al. (1978), Klepper and Leamer (1984) and the monograph by Fuller
(1987), who covered a variety of statistical techniques for measurement error models, from
simple to multivariate ones, and provided examples from various areas of application.

Now, let us consider the most common case when studying relationships between two

continuous variables = and H, which are related with the following linear (linearity is referred
to the parameters) form

H =By + BiZ, (2.2)
where = is the predictor variable and H is the response variable while the parameters S, 81
(intercept and slope, respectively) have to be estimated. Both variables represent the “true”
(unobserved) variables, which are measured with error; thus, the observed random variables are

=Z+5andY =H +¢, (2.3)

where § and & are the errors, which are uncorrelated with =. Because = and H are observed
with error, the model of the form (2.2) and (2.3) represents the MEM.

Let us assume a sample of size n, then the unobserved variables satisfy
ni=Po+piéi=1..,n (2.4)
and the equations for the actual observed variables are
xi=&+ 6 andy;, =n;+¢,i=1,...,n (2.5)
Regarding the assumptions of the random errors §; and ¢;, it is supposed that they have mean

zero and finite variances and they are uncorrelated with each other and amongst themselves,
ie.

E[5;] = E[g;] =0, forall i,
Var[6;] = o, Varle;] = 02, foralli,
Cov[6, 5] = 0, forall i, j, (26)

Cov[5;,8;] = Cov|e;, &] =0, foralli .

The existence of errors in both variables = and H poses a problem different from the seemingly
similar simple regression model described in Section 2.3, which is actually a special case of the
MEM. Substituting =, H from Eq. (2.3) to (2.2), it is obtained that

Y =By + B1X + (e — B196), (2.7)

Hence, X, which is a random variable, is correlated with the error term (¢ — 8, 6), with
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Cov[X,e — B16] = Cov[E + &, — ,6]

= Cov|[E,e] + Cov[E, —B,68] + Cov|[6, €] + Cov[5, —B16]

= —p,Cov[§, 5] (2.8)
—p,Var[4]

2
—B105.

Note that in the simple regression case, o7 = 0. Due to the above correlation, applying ordinary
least squares estimator in a MEM, vyields inconsistent estimates, which are not considered
reasonable for the parameters of such a model (Cheng and Van Ness, 2010).

Based on various assumptions as regards variable =, three distinct models can be formed:

a) when the ;’s are unknown “fixed” (meaning “not random”) constants, then the model
is called a functional model;

b) when the §;’s are random variables independent and identically distributed with
E(§) = pand Var[§;] = 02 > 0, then the model is called a structural model, and;

c) when the &;’s are independent random variables with different means y; and common
variance a2 > 0, then the ultrastructural model is formed. From this model, functional
and structural models are derived for 2 =0 and p; = -+ = u,, respectively. In
addition, the ultrastructural model reduces to the simple linear regression one if the
explanatory variable is measured without error, i.e. for §; = 0.

In practice, it is not straightforward to determine which relation is most appropriate for the
situation examined. As stated in Madansky (1959), this determination depends on the type of
inference, e.g. prediction problem or testing hypothesis about the parameters. In this thesis,
emphasis is given on the first two models, since they are more frequently encountered in the
relevant literature with numerous practical uses.

Summing up, a MEM presumes the following three models:

i. a regression model for the association of a (unobservable) regressor variable = to a
response variable Y;

ii. ameasurement model that relates the unobservable variable = to an observable variable
X and assuming an additive random error § with mean zero, and,

iii. the generating process of the values of the true variable &. If these values are assumed
to come from a distribution then the structural estimation is adopted, otherwise, if there
is no explicit assumption for the distribution of Z but {¢;};=, are rather considered as
sequences of fixed but unknown values, then the functional model is used.

2.2.1 Maximum likelihood estimation for the measurement error model

Maximum likelihood (ML) is probably the most widely adopted method for parameter
estimation in the MEMSs. ML estimates are obtained by maximizing the likelihood function with
respect to the unknown parameters. In practice, differentiating the likelihood function with
respect to the parameters and setting the derivatives equal to zero and solving the resulting
equations is the most common way to find the ML estimates. As regards these equations, the
following possibilities are present:

a) they can have a unique solution, which indeed maximizes the likelihood function;

b) they may have more than one solutions, one of which is the global maximum that
provides that ML estimate, and,;
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¢) they may have more than one solutions, none of which are a maximum (e.g. a local
maximum of the likelihood function). In this case, the likelihood function may either
have no maximum, but the obtained solution can be considered as an estimator, or a
maximum lies on the boundary of the parameter space. In the latter case, the ML
estimate exists but the estimates are not obtained by solving these equations.

Among the first authors that used ML estimation for the MEMs was Lindley (1947), who stated
that likelihood equations are consistent only if there is prior information available on the
regression parameters; see also Kendall and Stuart (1973), who revised the issue of parameter
estimation in a model with errors in both variables. A review of the approaches used to estimate
the unknown parameters of the linear structural model can be found in Gillard (2010).

2.3 Simple linear regression for linear variables

The classical model for the simple linear regression has the following formula:

Vi =Bo+ Biéi + & (2.9)

with the error terms g; being independent and identically distributed such that the mean value
is zero (E[g;] = 0) and the variance constant (Var[e;] = 02 > 0). Let clarify that with
regression, one can never find the “true” linear model that describes the relation of interest
rather an approximation of it since the analysis is done with a sample data; as regards the true
model & denotes the variation of y from the true mean value at &, while in the regression, the
residual values (deviation between the observed values y; of the variable Y and the predicted
ones ¥; based on the OLS coefficient estimates) computed from the sample approximate the
errors in the population. Hereunder, all the assumptions that need to be made in regression
models are summarized.

Minimizing the sum of the squared residuals ¥, 8Z = Y™, (y; — 9;)2, where £ represents the
vertical distance between y and ¥, and differentiating it with respect to each of the unknown
parameters, the OLS estimators of 5, and ; are obtained, after setting the derivatives to zero,

by

Bo =¥ — b€, and (2.10)
~ Sfy

== 211

Tosg (211)

where 7, £ are the sample means of y;, &;, respectively, sg, = X1 (& — &) (y; — ¥) and sg¢ =
n 2
i=1(€i - g) .

Despite the computational simplicity and directness of constructing and applying a simple
linear regression model for descriptive, inferential or prediction purposes, there are restrictive
sets of assumptions that should be satisfied in order to provide valid regression estimates. Most
of the assumptions concerning the standard regression model (of the population) deal with the
nature of the relationship between the response and explanatory variables and the behaviour of
the error term as well, and are required to obtain estimators for the coefficients of the regression
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model with desirable properties, such as unbiasedness® and efficiency’. As regards
unbiasedness, let clarify that it is not guaranteed that the OLS estimates for the regression
parameters from a single sample will coincide with the population value but that after a large
number of repeated samples from a population, the mean value of the probability distribution
produced for the estimates of the parameters equals the true population value.

The first assumption is about linearity. With the term “linear” it is implied that there is a linear
relation between the regression coefficients f and the covariates or alternatively that the
conditional means of Y fall in a straight line. On the other hand, there is no need for the terms
that involve covariates to be linear (e.g. adding the term cosZ' is acceptable).

Regardless of the distribution of the error term, another important assumption is that the error
term is uncorrelated with the covariate with zero mean error, expressed as E[g;|¢;] = 0, and
each error term ¢; has equal variance o2, i.e. Var[g;|é;] = o2 forall i = 1, ...,n, also termed
as homoscedasticity. Note that this implies that the conditional variance of y given ¢ is also
constant. Furthermore, the error terms for any two observations i # j must be independent with
Cov[ei, sj] = 0, also called lack of autocorrelation. If these assumptions are violated, then the
OLS estimates of the regression coefficients still remain unbiased but no longer have the lowest
variance.

Moreover, the error term is independent and identically distributed with mean value zero and
constant variance. However, it is mathematically convenient to additionally assume that the
errors (with respect to &) are normally distributed, i.e. £;~N(0,02) in order to accurately
estimate confidence intervals and conduct statistical tests of significance. In turn, the
observations of the response variable comes from a (conditional) normal distribution with
Ely;] = Bo + B1&; and Var[y;] = a?. Furthermore, if the regression coefficients have to be
estimated from a small sample, then the normality assumption is essential to justify tests of
statistical significance and derive that the sampling distributions of the estimated regression
coefficients are asymptotically normal distributed. On the other hand, for sufficiently large
samples and due to the central limit theorem, the error term, approximated by the sum of an
infinite series of independent random variables, follows a normal distribution. Nevertheless,
the normality assumption is not necessary to obtain estimates of the regression coefficients that
are BLUE while maximum likelihood estimator coincides with the OLS estimator of 8, and 8,
under the normality assumption regarding the error term.

The covariate is considered to be non-random, meaning that the values &;, i =1,...,n are
assumed to be measured without error. Otherwise, biased estimates will be derived if the
classical regression model is applied.

2.4 Robust regression models for linear variables

Another approach that takes into account deviations from the classical regression assumptions
and attempts to temper the influence of outliers and influential observations on the estimator is
robust regression. This approach aims to produce estimators that are insensitive in the presence
of these points; see the standard reference works of Tukey (1960); Huber (1981); Hampel et al.
(1986); Rousseeuw and Leroy (1987); Staudte and Sheather (1990); Ryan (1997); Maronna et
al. (2006); Huber and Ronchetti (2009). Compared with diagnostic methods, presented in
Section 2.4.2, Huber (1981) mentions that robust methods are more reliable and perform better,

3 An estimator 8 f a population parameter @ is called unbiased if the mean value of an infinite number of
repeated random samples is equal to the parameter being estimated, i.e. if E[é] =0.

4 An unbiased estimator is called efficient if it exhibits the minimum variance within a given set of
unbiased estimators.
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since they provide a middle ground between rejecting and accepting a suspicious observation
without the analyst’s subjective decision (to keep or remove a “suspicious” observation from
the data sample). The essential difference between robust regression and diagnostic methods
lies in the fact that in the latter approach the outliers are first identified and removed from the
data set and then OLS method is applied on the “clean” data sample while in the former outliers
are identified given that robust estimates are in hand. Moreover, if someone is not interested in
detecting the outliers but only in the estimation of regression coefficients, still robust methods
can provide reliable estimates since outlying data will not damage the estimation.

2.4.1 Robust vs linear regression

Simple linear regression is based on the principle of the OLS method, i.e. the minimization of
the sum of squared residuals. The OLS estimators have some important properties: they are
linear, unbiased, efficient (they have the minimum variance) and consistent; see also Section
2.3. However, all these properties hold inter alia under the assumptions that the random error
terms are statistically independent, normally distributed with zero mean. In practice, these
conditions are rarely satisfied or even examined and normality is usually considered just as a
convenient approximation. Despite the elegant properties of the OLS method, it should be
highlighted that it is clearly not robust to violations of its assumptions and especially, deviations
from the normality assumption. Moreover, OLS estimates are very sensitive to outliers, even in
large samples, leading to inefficient and biased results. For instance, in Zaman et al. (2001), it
is noted that even a small percentage of bad or deviant observations in a very large sample can
change drastically the OLS coefficients and result in systematic distortions of OLS estimates.

Robust methods have been introduced to provide relatively insensitive, consistent and high
efficient estimators, when there are slight violations from the standard assumptions in the
assumed statistical model, and for the rational consideration of outliers in regression analysis.
In this regard, the use of robust methods is essential in various applications, since outliers are
present in the available data samples (see Appendix E) while some of the main assumptions of
OLS are suspicious or unrealistic, e.g. the homoscedasticity assumption.

A reasonable gquestion that may be asked at this point is why robust regression techniques are
not widely used? There is a number of potential answers to this question. For instance, there
are available several types of robust regression models that need to be examined in a statistical
analysis in order to select the most appropriate one while some robust methods require complex
analytical methods that may be unstable. As is noted in Zaman et al. (2001), some additional
reasons are the following:

o There is a rather naive trust that large sample sizes make robust techniques unnecessary.

« A certainty that the outliers can be either detected by visual inspection or by identifying
unusual OLS residuals.

o There is lack of expertise as regards the interpretation of results from a robust analysis
and lack of knowledge of the gains available from such analysis.

2.4.2 Unusual observations

OLS estimation can be substantially altered and lead to inaccurate results in the presence of one
or multiple unusual observations in the sample. Collectively, untypical observations, the so-
called outliers, exhibit inconsistency with the bulk of the data and their occurrence is a very
common and delicate issue in real data analysis encountered in the context of various
applications, such as data cleansing, network intrusion, severe weather prediction, geographic
information systems, etc.
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Taking into consideration the position of an observation in a scatter plot and the variable in
which it corresponds, the conspicuous observations can be grouped in three classes; see also
Ryan (1997). The outliers in the explanatory variable, also called as leverage points, can tilt the
least-squares line due to the large effect on the corresponding estimator. Leverage points do not
necessarily have to be outliers. The outliers in the response variable can be considered as such,
because they have large standardized residuals and rather large influence on the least-squares
line, since they increase the magnitude of residuals. Finally, an outlier both in the response and
explanatory variables may be either a point with a large standardized residual or a point that
deviates from the linear relationship set by the majority of the data or both. In this case, the
relationship between the two variables must be taken into account for the detection of the outlier
in question. Another significant class of atypical observations are the so-called influential
points, which individually or jointly excessively influence the calculated values of various
estimates (e.g. estimated regression coefficients, standard errors, estimated values); Nurunnabi
et al. (2016). Chatterjee and Hadi (1986) examined thoroughly the interrelationship among
outliers, leverage and influential points and highlighted that outliers and leverage points are not
necessarily influential, and on the other hand, influential observations may not be high leverage
points and outliers.

Since outliers may seriously affect regression analysis outputs and estimation of the relevant
parameters, numerous procedures have been developed for the detection and investigation of
such observations in linear regression. A straightforward way is the graphical representation
(through scatterplots) of residuals and hat elements of the hat matrix, which are used as
intrepretators of the amount of leverage or influence, exerted on the estimated values by the
response variable (Hoaglin and Welsch, 1978), while there is an ongoing research on the
simultaneous display of outliers, high leverage and influential points (Imon, 2005; Menjoge
and Welsch, 2010; Nurunnabi et al., 2014). Another well-known statistical approach to measure
influence is through diagnostic methods, i.e. statistics generally based on classical estimates
aiming to the detection of influential points from the assumed model. This family of techniques
is often implemented by the same procedure: first delete each observation one at a time and in
turn, examine if there is any impact on the various calculated values. The most well-known
diagnostic measures are the Cook’s distance, dfbeta; and dffitsi. However, these techniques
perform poorly in the presence of multiple outliers because of masking and swamping effects®.
To this end, more effective, but frequently computationally expensive, diagnistics have been
proposed in the relevant literature; see, for example, Barrett and Gray (1997); Wisnowski et al.
(2001); Leys et al. (2018); Thennadil et al. (2018). Standard books that deal with outlier analysis
are Hawkins (1980); Rousseeuw and Leroy (1987); Barnett and Lewis (1994); Aggarwal
(2016).

On the other hand, removing outlying data points that are legitimately present in a data sample,
as is the case of extreme values that are commonly encountered in metocean data, may lead to
negative effects and wrong interpretations due to the wrong selection of model. On top of that,
OLS estimation method can be highly influenced by even one outlier. When there is evidence
that any of the standard regression assumptions is violated due to the presence of such aberrant
observations then other statistical approaches are suggested. One of the widely used methods is
robustification, which is the subject of the next sections.

Prior to the presentation of robust models, it is essential to make reference to specific statistical
measures assessing robustness properties of robust regression models. Each measure of
robustness describes different characteristics of the procedure, therefore they perform
complementarily.

°> Masking is the inefficiency of identifying a set of outliers because of the presence of another set, usually
neighbouring, while swamping occurs when “clean” observations are mistaken for outliers because of
the presence of another group of observations, usually distant.
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2.4.3 Measures of robustness

Consistency

Consider the random variable X with probability distribution Py € P and cumulative
distribution function F. 9 can be expressed as a functional 9 = T(P), defined on P. Based on
a random sample X3, ..., X, of size n, a sensible estimator of 9 is T(B,) (or T(F,)), where B, is
the empirical probability distribution

n
1
P.(A) =—ZI[XL~ €Al,A€B, 2.12)
e
where I is the indicator function. The empirical distribution function F,, pertaining on B,, is

Fn = Pn[(—OO,x]] =

S|re

n
Zz[xi <x],x €R. 2.13)
i=1

It is known from asymptotic statistics that as n — oo, the statistical functional T'(P,) converges
in probability to T (P).

A desirable property of a statistical estimator is to be Fisher consistent. Consider a random
sample Xj,...,X,, with some probability distribution P, which depends on an unknown
parameter 9. Let 9 an estimator of 9 expressed as a functional of the empirical probability
distribution® P,, i.e. 9 =T(R). If T(P) =9, V9 €0, P € P, then J is said to be Fisher
consistent (Fisher, 1922).

Breakdown point

The breakdown point €* of an estimator expresses the maximal amount of contamination
(proportion of atypical points) an estimator can withstand before it becomes essentially useless.
Breakdown point can be defined in different ways; see, e.g. Hampel (1971); Donoho and Huber
(1983). In this thesis, the finite-sample breakdown point is adopted. Let a random sample
X© = (x,,...,x,) of size n, from a parametric model F depending on 9, and T a regression
estimator such that T(X) = 9. Now imagine that m points from the original sample are replaced
by arbitrary, and rather outlying, values, with the new sample denoted by X ™). The breakdown
point of T for the sample X(® is defined as:

en(T,X©) = min {% sup||T(X™) = T(X®)| = oo}, (2.14)
x(m)

where ||-| is the Euclidean norm and sup||T(X ™)) — T(X(®)|| denotes the maximum bias that
(m)

result from such contamination. An estimate is said to have broken down if the maximum bias
is infinite. In other words, s;(T,X(O)) is the smallest fraction of contaminated values in the
sample that can lead to values of the estimator T far from T (X(©), i.e. to unreliable estimates.
For large (infinite) sample size, the breakdown point is given by €* = T{ilgos;. For a more

detailed description of the breakdown point, see Donoho and Huber (1983); Hampel et al.
(1986); Heritier et al. (2009). Practically, the highest value of the breakdown point of an

® The empirical functional is often called (sample) statistic.

38



Chapter 2

estimator one can hope is 50%, because it is not possible to discriminate “good” observations
from outliers for higher values, while the lowest one is 0% with the estimates bearing no
contamination. A rather surprising result is that for OLS it holds that €5, = 1/n, which tends to
zero as the sample size becomes larger. This means that even one outlying observation may
have significant influence on the OLS estimates of the unknown parameters.

Influence function

Whereas the BDP is a global robustness measure in the sense that it measures the maximum
amount of contamination an estimator can resist, the influence function (or curve) of an
estimator, another important tool, measures local robustness, i.e. quantifies how infinitesimal
perturbations (at a point x) influence an estimator in large samples.

A straightforward way to assess the influence of a single observation x on a specific sample
statistic T,, (e.g. mean, median) is to calculate the difference between the corresponding values
with and without x. In this respect, the standardized sensitivity curve quantifies this influence
as follows:

T (X1, ooy Xp—1, %) — T (X1, vry Xpp—1)

(1/n) '

The influence function (Hampel, 1974) of an estimator is an asymptotic version of its sensitivity
curve (Maronna et al., 2006). By means of the influence function, the robustness of a statistic
T for an infinitesimal contamination at any point x, given a sample with distribution F, is
expressed as follows:

SC,(x,T) = (2.15)

T(F)—T(F) 0
— = @T(FE) ) (2.16)

IF(x;T,F) = lirgl+
S £=0

€

where F, = (1 — €)F + €6, with §, a point-mass distribution that puts all its mass at point x
and ¢ denoting the level of contamination. For the local robustness of T, it is required that the
influence function is bounded for all x.

The gross error sensitivity of T at F is the maximum absolute value of the influence function
Y (T, F) = sup|lF (x; T, F)|, (2.17)
X

which measures the worst influence on T induced by a small perturbation of F at a point x. For
a finite gross error sensitivity (that is a bounded influence function), the statistic T is called
B(ias)-robust at F.

Other additional concepts that are connected with influence function are local shift sensitivity
and rejection point. The former term measures the influence of shifting slightly an observation
from point x to y while the latter one represents a distance measure, meaning that points lying
outside this distance (centre of data) have no effect on asymptotic bias (the influence function
becomes zero).

Asymptotic efficiency

In robust regression, the efficiency of an estimator is expressed as the ratio of the smallest
possible variance obtained using a robust regression technique divided by the one obtained from
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OLS. Recall that the OLS estimators are considered to be the most known efficient estimators,
if all conditions are fulfilled, since this method possesses the minimum variance. Obviously,
the ratio of the ideal estimator is equal or close to unity. In the relevant literature, the emphasis
is on the asymptotic efficiency. In general, the precision of an asymptotically efficient estimator
tends to the theoretical limit, as the sample size increases. For an unbiased estimator, asymptotic
efficiency is the limit of its efficiency as the sample size n — oo and depends on the population
(distribution).

Summarizing the above-mentioned criteria, it is concluded that the following requirements are
essential for a robust estimator

Fisher consistency;

e non-zero breakdown point, with higher values resulting to more resistant estimators;
bounded influence function, so that a single unusual observation will have a very limited
effect on the estimation;

e quite low gross error sensitivity;

o low local shift sensitivity and finite rejection point;

o high efficiency.

2.4.4 Robust estimators

In the context of regression, some additional desirable properties for the robust estimators are
regression, scale and affine equivariance. Attaining these properties it is assured that that the
results of the regression analysis will not alter in case of particular transformations of the data.
Based on the general case of the multiple linear regression model, let y denote the n x 1 vector
of the response variable, x;, i = 1, ..., n, the rows of a full rank n X p matrix X and g thep x 1
vector of the parameters to be estimated. An estimator T is called regression equivarient, if

TXy+vX)=TXy) +vV, (2.18)

where v € R™ is any vector. This condition allows the selection of any arbitrary values for the
vector without any consequences in the validation of the results.

A scale equivariant estimator requires that
T(X,cy) = cT(X,y), (2.19)
for any constant ¢ € R. The above condition practically suggests that the measurement units of
the response variable (with respect to the measurement units of the explanatory variable) do not
affect the fit results.
As regards the affine equivariance, the following condition is required
T(XAy) = A'T(X)y), (2.20)

for any non-singular A € RP*P.

Let it be noted that on the face of other properties (e.g. low prediction error), sometimes
equivariance is sacrificed (Maronna et al., 2006).

Going back to the univariate notation, let us assume a random sample X, ..., X;, with probability

distribution P and distribution function F, for which we want to examine how the response
variable Y is related to the covariate X by traditionally assuming a linear regression model.
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Since OLS estimator is prone to outlying data, the robust methods have been proposed for
estimating regression coefficients in the statistical literature, which are divided into three wide
classes L —, M —and R — estimators.

L — estimators

Any estimator that is a linear combination of the order statistics written in the form L,, =
Y1 CniXn: i» Where c,,; are real constants and X,,.; < -+ < X,,. , are the ordered values of the
sample, is called a (classical) L — estimator. Instead of minimizing the root mean square error,
an alternative approach for the estimation of the regression parameters, proposed by Edgeworth
(1887), is to minimize the sum of the absolute values of the residuals, i.e.

n
mjnZléil di=1,..,n. (2.21)
b=

Through the above form the least absolute deviation (LAD) estimates are achieved. LAD
estimator is also referred to as the Ly — estimator (due to the L1 norm), while OLS is sometimes
called L, — estimator. It is proved that the L1 — estimator can deal with y —outliers of a sample,
but remains weak against x —outliers, which have greater influence on the fitting. Because of
that effect, the breakdown point this estimator will tend to zero. A more generalized method of
the L — estimator was proposed by Koenker and Bassett (1978) and is called quantile
regression. This type of regression minimizes a sum of appropriately weighted distances
between the observed values and the predicted ones through the check function p,(€) defined
by —(1 — 1)é if ¢ < 0 (over-prediction) and € if € > 0 (under-prediction). For the special case
where T = 0.5, the quantile regression coincides with L; — estimator.

A more robust alternative was first introduced by Hampel (1975) and aims at minimizing the
median of the squared residuals, which is formulated as

mBinmedéiz,i =1,..,n (2.22)

yielding the least median of squares (LMS) estimator. LMS is resistant to both x — and
y —outliers, possesses the highest possible breakdown point and is equivariant as regards linear
transformations on the covariates. However, LMS performance in terms of asymptotic
efficiency is rather poor.

Another known L — estimator that has higher breakdown point is the least trimmed squares
(LTS) regression estimator developed by Rousseeuw (1984). This estimator is defined by

h
mﬁinZ(éz)i:n,i —1,..,n. (2.23)
i=1

where (£2);., <...< (£%),,., are the squared ordered residuals (first squared and then ordered)
and h, known as coverage, is the number of the remaining observations after the trimming,
which should satisfy that n/2 < h < n. There is a trade-off as regards h as for small values of
h a higher breakdown point is attained whereas high values of h lead to higher efficiency (on
condition that the sample is not too contaminated). The maximum breakdown point (50%) is
attained when h = n/2 + [(p + 1)/2], with p denoting the number of explanatory variables in
the regression model, which coincide with the half sample in the simple regression model; see
Rousseeuw and Leroy (1987), p. 132, Theorem 6. However, in realistic applications, the
proportion of outliers in the sample is much smaller — usually 10-25%. Obviously, when h =
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n, which corresponds to the OLS estimator, the breakdown point is zero. Moreover, LTS
satisfies the properties of regression, scale and affine equivariance. Although LTS has a
relatively low asymptotic efficiency, but better than LMS, as stated by Croux et al. (1994), it
still plays a role in the estimation of the parameters of other more robust methods.

M — estimators

In Huber (1964), the use of another approach of robust regression was introduced, the M —
estimators, which are a trade-off between the efficiency of OLS and the resistance of L;—
estimators. This class of estimators can also be regarded as a generalization of MLE. An M —
estimator is defined by minimizing the following function of the residuals:

n
mﬁinz p(&),i=1,..,n, (2.24)
i=1

where p(-) is called objective function, and should be continuous, non-negative, symmetric
function with a unigue minimum at zero. The M — estimator is simply a general robust case that
results in the OLS estimator by appropriately defining function p(-).

Differentiating Eq. (2.24) with respect to the regression coefficients and setting to zero, it is
obtained that

n
Zw(éi) X =0,i=1,..,n, (2.25)
i=1

where () is the derivative of p(-), called the score (or influence) function. Egs. (2.24) and
(2.25) are not necessarily equivalent; for instance, Eq. (2.25) may have more solutions than Eqg.
(2.24). If a bounded, monotone y —function is chosen, then the breakdown point of this
estimator is approximately 50%, leading also to bounded p —functions with unique solutions
for the corresponding M — estimator. M — estimation can be robust if a i —function with
rejection of remote outliers is chosen while a more reliable solution can be achieved when a
redescending ¥ —function is used, which discard completely but gradually (avoiding abrupt
jumps) the effect of distant outlying observations. The essence behind the redescending M —
estimators is to give maximum weight for the residuals lying around the neighbourhood of zero
and the more they depart from the centre, the weight gets smaller. Among the most commonly
used objective functions for M — estimators are: i) the Huber estimator; ii) the Andrew
estimator; iii) the Welsch estimator, and; iv) the biweight or Tukey’s bisquare estimator. See
also Table 2-1.

Because M — estimator is not scale equivariant, the residuals have to be standardized by means
of a preliminary (specified) estimate of scale S as follows

n
Y@/ x=0i=1.n (2.26)
i=1
A popular robust estimator for the scale factor S is the normalized median absolute deviation
(MAD), defined by

MAD

= 2.27
0.6745’ 2.27)
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where MAD = med[|é; — med(¢;)|], i =1,..,n. Through the constant 1/0.6745 =
1/®~1(0.75) a consistent estimator for o is achieved for observations randomly sampled from
a normal distribution. Alternatively, the regression coefficients have to be estimated
simultaneously with scale. Since this estimator is based on the median, it is highly resistant to
outlying observations, with &, = 50% and a bounded influence function. Generally, M —
estimators are statistically better than OLS with regard to resistance and robustness to
y —outliers. In some cases, their performance is poor compared to the latter, since they do not
consider leverage points. In order to deal with this drawback, some authors proposed to enhance
the definition of M — estimator by an appropriate weight function. To this end, Mallows (1975)
proposed the generalized M — estimator by replacing Eq. (2.26) with

n
D wip(a/9) xi=0,i=1,..m, (2.29)
i=1

where w; = W (€;/s). In practice, the M — estimates cannot be computed directly from the data,
because the weights depend upon the residuals, which in turn, depend upon the estimates. As a
result, they are computed using an iteratively reweighted least squares (IRLS) algorithm.

Table 2-1. Objective and weight functions for the most popular M — estimators. ru, ra, rw and
rg are tuning constants used appropriately to provide high efficiency in the normal case

Estimator Objective function Weight function
Least-squares prs(8) = &2 wis(d) =1
Huber o 8272, &l <y . ={ 1, [fl<my
pue) = {mlél —13/2, 18 > 1y W = L/l 16 > g
Andrew o _ Ta(1=cos(é/1y), 1&] < mam N — {Sin(é/rA)/(é/rA)vlél S 1T
pA(‘g) - { ZT'A, |é| > TATC WA(g) O, |é| > raAT
Welsch 2 £\2 542
pw(®) = rﬂ[l —exp (— (=) )] Jel <o wy(®) = exp (— (=) ) 8] < oo
2 w w
Biweight pg(é) Wi (&) = {[1 = (1&l/m8)?1%, 1€l < 1g
_ r5/6{1 —[1—(&/mp)?I*}, |€] < g B 0, |&] > g
1£2/6, |&] > rg

S — estimators

S — estimated, introduced by Rousseeuw and Yohai (1984), were developed to improve the
efficiency of both LMS and LTS, based on the estimates of scale. Specifically, their objective
functions are replaced by a more efficient scale estimator that is applied to the residuals &; in
order to minimize their dispersion, and their mathematical expression is

minS(& (B),..., £.(B)), (2.29)

=)

The dispersion S(& (B),..., &,(B)) should satisfy the following constraint:

1i (é")— =1 (2.30)
" plg)=ri=1l..n .

=1

where k is a constant, taken often equal to E4 [p(£)] to assure consistency of S at the standard
normal distribution function ®. S — estimators are regression and scale equivariant, and can
achieve high breakdown point with the appropriate selection of p —function. However, they
cannot combine simultaneously high relative efficiency (approximately 30%); see Hossjer
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(1992). Another drawback refers to the optimization procedure implemented to obtain S —
estimators, which is rather delicate. The reason lies in the fact that many local minima may
emerge for the bounded, but not convex, p —function resulting in random resampling
algorithms for the solution. This implies that the repetition of this procedure (for the same data
sample) may provide different estimates. As we shall see immediately afterwards, S —
estimators are usually used to provide an initial estimate in more complex robust regression
methods. In order to overcome the low efficiency of S —estimators, Croux et al. (1994) proposed
the generalised S — estimators, which are based on the minimization of the generalized M —
estimator of residual scale.

MM — estimators

Another class of robust estimators, introduced by Yohai (1987) for the linear regression setting,
which tries to combine the high efficiency of M — estimators with the high resistance to outliers
of S — estimators (i.e. high breakdown point), is the so-called MM — estimates. There is a three-
step procedure to estimate the regression coefficients B: i) at the first stage, an initial estimate
B is calculated so that it possesses a high breakdown point, such as LTS or S — estimates
(with Huber or bisquare functions), but not necessarily high efficiency, ii) at the second stage,
a robust M — estimate of scale S of the residuals is computed based on the initial estimate, and
iii) in the final stage, B is defined as any solution of

Zw[éz(ﬁ)/S] xi=0i=1,.,n, (2.31)
i=1

which satisfies

> p(@®)/5) < ) p(&(B©)/S),i =1, (2.32)
i=1

i=1

It is obvious that at the final stage an M — estimation is carried out with only one extra condition.
Thus, the IRLS can be applied to compute the potential solution of Eq. (2.31) by keeping fixed
the measure of the scale estimate S in each iteration. Moreover, Yohai (1987) proved that the
final estimator will obtain the highest breakdown point (i.e. 50%), if an estimator with equal
breakdown point is used in the first stage. The objective functions of stages 1, 2 and 3 can vary,
since the two first stages are responsible for breakdown point and the third one for asymptotic
efficiency. Generally, MM — estimator performs well except in the presence of high leverage
points (Simpson and Montgomery, 1998).

R — estimators

Robust regression estimators based on ranks of the residuals are called R — estimators, and were
proposed by Hodges and Lehmann (1963) and extended by Jaeckel (1972) and others. Let R;
denote the rank of the i —th residual €;, and a(-) a monotone score function such that it satisfies
Y= a, (i) = 0, then the minimization of the following sum provides the R — estimates

n

mﬁinz a,(R)é,i=1,..,n (2.33)

i=1
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In contrast with the M — estimators, this class of estimators are scale equivariant. On the other
hand, most of the R — estimates have a breakdown point €;, = 1/n - 0, when n - c0. R —
estimators are not used in this thesis, but are described in brief for completeness.

2.5 Circular regression models

Circular regression regards the prediction of the circular response variable conditional on the
explanatory one and can be found in numerous applications including engineering and
environmental sciences. Regression models that handle circular data are generally categorized
in three groups depending on the nature of the variables involved. In this respect, i) if both the
response and the explanatory (or covariate) reside on the unit circle, we refer to a circular-
circular regression model, ii) if the response variable takes values on the real line and the
explanatory on the unit circle, then the regression model is called linear-circular, and iii)
circular-linear regression for the vice versa case.

An early study of regression models including circular variable(s) was made by Gould (1969),
who introduced a maximum likelihood solution for estimating the parameters of a (multivariate)
circular-linear regression problem; however, those parameters were not unique (Lund, 1999;
SenGupta and Ugwuowo, 2006). Some years later, in the works by Mardia (1972), Johnson and
Wehrly (1978) and Fisher and Lee (1992) improvements of Gould’s model were presented
while Laycock (1975) described several regression models including circular variates. Lund
(1999) defined a regression model for the prediction of a circular variable by a circular predictor
and a set of linear covariates showing that least circular distance and maximum likelihood
estimates coincide if circular response follows a von Mises distribution. SenGupta and
Ugwuowo (2006) studied a multivariate regression model with a linear response variable, a
circular explanatory one, expressed as a trigonometric polynomial, and a set of linear
covariates. This model was applied to solar and wind energy data.

Circular-circular regression models have been proposed by many authors. For instance,
Jammalamadaka and Sarma (1993) introduced a circular regression model for two circular rv’s,
where the circular response variable is expressed through sine and cosine functions that are
regressed on functions expressed in terms of the Fourier series expansions of the circular
explanatory variable. The estimation of parameters of the suggested model is based on least
squares. Rivest (1997) provided a circular regression method for predicting direction using a
rotation of the decentred predictor with application to earthquake datasets. In the work by
Downs and Mardia (2002), the proposed regression model between circular variables was based
on a tangent link function and is equivalent to the Mobius circle transformation on the complex
plane. The latter mapping was also adopted by Kato et al. (2008) for the introduction of a new
circular-circular regression model, under the assumption that errors follow a Wrapped Cauchy
distribution instead of the von Mises distribution, which was applied to marine biology and
wind direction data. The two latter regression models were extended by Kato and Jones (2010)
and Hussin et al. (2004), who proposed a linear association between the two circular variables
by constraining for practical reasons the real-valued parameter of the explanatory variable to
take values close to unity. Polsen and Taylor (2015) after presenting a review on circular-
circular regression models, introduced a method for the detection of influential observations.
SenGupta and Kim (2016) proposed the least circular distance estimation method in order to
analyse the circular variables of a new circular-circular regression model in the context of
determining the relationship of circular genomes.

For the rest of this section let 8; and ¢; be the observed values of the circular explanatory

variable ® and the circular response variable @, respectively. Since the function atan2 returns
values within the interval (—m, 7], it is more convenient to work with directions in this interval.
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The mapping to [0, 27) can be easily made by using the modulo operation of each direction
with 2.

2.5.1 Circular-circular regression model

In order to obtain rational results after performing a circular regression, it is necessary to include
a link function between the circular variables as the concept of scaling is non-existent; in this
respect, various approaches have been developed for circular regression (Rueda et al., 2016).
In this thesis, the circular-circular regression model presented by SenGupta et al. (2013) and
SenGupta and Kim (2016), which is a generalization of Downs and Mardia’s model, is adopted.
First, let us consider the following mapping

tan (0 _2M0> = fo + f1itan ((D _z'uqb), (2.34)

where u, and ug are the location parameters of the circular variables ® and @, respectively, S,
is a real number denoting the rotation from ug, and S is the slope regression parameter in the
closed interval [—1,1]. See also Figure 2-1, for a graphical representation of this mapping.

Since the tangent function has double solutions in (—, r] and the range of arctangent function
is limited to (— gg) a unique solution of Eq. (2.34) can be obtained if we turn to half angles,
i.e.

O =g+ 2tan?! {ﬂo + fitan (d) _2M¢)}. (2.35)

Now let us suppose that 8;’s are the sample values from the response circular variable @, which
are subject to error. Each of these values are observed for each fixed value ¢; of the explanatory
circular variable @. Based on the above mapping, the circular-circular regression model is
defined as follows:

--- B =-l

- == B,=-075
B,=-0.5
B, =-0.25
B,=0.25
B,=05

—_—p,=0.75

—_— =1

-4 -2 0 2 4
]

Figure 2-1. Graphical representation of the tangent mapping for selected of ;. ue, 1 and
B, are set to zero.
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0, = ug + 2 tan"1 {,@0 + Bytan (‘p" ;”‘P)} tegpni=1,.,m, (2.36)

where &g ; is a random error that follows the von Mises distribution with zero mean direction
and a constant concentration parameter.

Replacing ug by ¢, the estimation of the unknown parameters of the model in Eq. (2.36) (B,
B1 and ug) is based on the minimization of the circular distance, a non-negative measure,
between two angles 1, w expressed as follows:

d,w) =1—cos(y — w),d € [0, 2]. (2.37)

For | — w| = m(mod2m), then d = 2, while d =0 implies that ¥y = w(mod2m). The
minimization of the sum of squared distances applied in the linear regression is replaced by the
minimization of sums of the above circular distance given by the following form

minD (By, B1, Ug) = minZ[l - cos(@i - éi)]
=1 ~ (2.38)

N _ i — ¢
= min 1—cos(9i—y9—2tan 1{[)’ +B tan< )})],

where D(-) is the sum of the circular distances. Taking the first order partial derivatives of D(-)
with respect to the parameters S, 8; and ug, it is obtained

aD(ﬁo'ﬁl'ﬂe) i r25in (Gi — g —2tan~! {30 + Btan (:bi 2_ (]3)})]‘
S B i (pesa(®59) [
=0;

9D (Bo, B1, 1e)

B ) )
_ Zn: [Zian ((pi 73 ¢) sin <9i —pg —2tan”" {Bo + ftan (d)i > ¢)})]I N (2.40)
= 1 (o + e (25 qs))z I
aD(ﬁg'—lip#e) = zn: —sin <9i — pg — 2tan”?! {,80 + B ,tan <¢i 2_ (5)}) =0. (2.41)
i=1

2.5.2 Linear-circular and circular-linear regression models

When modelling the relation between a linear response variable Y and a circular explanatory
one O (case of linear-circular regression), a simple model, proposed by Mardia (1976), can be
written of the form

Vi = .BO + ,31C059i + ﬁZSiHQi + Ey’i,i = 1, ., n, (242)
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where y; denotes the linear observations, 8; is the circular observations and ¢, ; are the random
errors assumed to be independent and identically distributed following a normal distribution
with mean 0 and (constant) variance o 2. The regression coefficients S, 51, 8, can be estimated
by applying the least squares or the maximum likelihood methods.

A similar model has been proposed by Kim and Sengupta (2015) with the following form

Yi = Po + P1cos(0; —pg) + &y i =1,...,m, (2.43)
where ug denoted the mean direction. For §; > 0 and 8 moving away from pg, y decreases,
while it increases as 6 is moving towards pg. For B; < 0, the opposite is valid. Let it be noted
that there is 2-to-1 mapping from 6 to y (or from y to 8); e.g. y takes the same value when 6 =
u+mandf =pu—m.

Likewise, in case a circular response variable @ is to be modelled as a function of a linear
explanatory variable Y, the following model can be applied

cos(0; —pg) = Po+ P1yi t i =1,..,m, (2.44)

assuming that &4 ; follows the von Mises distribution with zero mean O and concentration
parameter k.

2.6 Calibration models
The classical statistical calibration is used when someone wants to predict an estimate of a new

X, given a new observed y,. Assuming the simple case of model (2.9), the calibration model is
written as (Eisenhart, 1939)

Xoc=—75*+5 Yo (2.45)

with 8, and j3; denoting the estimated parameters from the regression method.

The assumptions that hold for the above model is that the regressor X is measured without error
while the random errors of Y are normally distributed about the true values, have constant
variance o2 and are independent of X. As was demonstrated by Williams (1969), the reciprocal
of the slope, assuming Cauchy-like behaviour, has infinite variance and thus, infinite mean
squared error’.

An alternative approach is to regress X on Y, a procedure known as inverse regression, and has
the following form

X = Po + B1yi + wy, (2.46)
where y; and w; are independent and also w;~N (0, 52). Hence, the estimate £, is provided by

Xo1 = Bé + Bivo. (2.47)

" The variance (and bias) of the slope and the mean squared error are important statistical properties in
linear regression since other properties depend on them (e.g. variance of intercept).
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However, the inverse regression assumes that Y is measured with negligible error, which is
usually unrealistic in real-world applications. The major differentiation between the two
methods is that the former one minimizes the sum of the vertical distances between
measurements and the fitted line while in the latter one the sum of the horizontal distances is
minimized.

Krutchkoff (1967) compared inverse and reverse regression by means of Monte Carlo
simulations and showed that the reverse regression is more efficient regarding prediction based
on the mean squared error; however, his approach has come under some criticism (Berkson,
1969; Halperin, 1970; Osborne, 1991) and supports as well (Centner et al., 1998; Srivastava,
1995; Tellinghuisen, 2000). These two calibration methods can lead to different estimates of
the regressor variable X and raised many controversies; yet no definitive solution has been
obtained due to the complexity of the problem (Kannan et al., 2007).

Although a wide variety of studies have been focused on the classical calibration and inverse
regression for linear variables, there are very limited works on the calibration problem for
circular variables despite their apparent value in offshore and nearshore applications. A
reference work for this subject is provided by SenGupta et al. (2013).

Let clarify that the calibration procedure in this thesis is implemented in order to correct the
response variable in terms of the regressor one rather than predict the regressor variable after
observing one or more values of the response variable. This concept has been adopted in a series
of publications (Soukissian et al., 2014; Soukissian and Papadopoulos, 2015b; Karathanasi et
al., 2016); particular results of some of them are briefly presented in Part II.

2.6.1 Calibration of linear variables

Suppose that for an unknown Z, Y; is obtained, according to Eq. (2.3) by

Yf = Hf+ Sf,Sf"'N(0,0’S)
He = By + 15

Based on Eq. (2.1), =f can be estimated by

‘:f,C =——=+ = Yf, (248)

Zt1 = Bo + BiYr. (2.49)

2.6.2 Calibration of directional variables

In order to apply the classical circular regression, firstly the estimation of the unknown
parameters of Eq. (2.36) is necessary by minimizing the objective function Q(-) based on the
circular distances between the initial and predicted values of the response variable @ (see also
Eqg. (2.37)):
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minQ(ﬁo,ﬁl,ug,u¢) = minZ[l - cos(Bi — éi)]
=1 (2.50)

N _ i — Uy
= min 1 —cos <9i — g — 2tan™?! {B + f;tan <—)}>]
;[ ot h1 >

The estimates 3y, 81, g, fig are obtained by setting the first order equations for each parameter
equal to zero. The calibration equation for predicting the unknown value of the regressor @ is
estimated by

(o5
B

¢ = Ay + 2tan” (2.51)

On the other hand, in order to implement inverse circular calibration, Eq. (2.36) is solved with
respect to ¢ and the obtained relation is the following:

¢ = pp +2tan”? {@ - %tan (9 — MB)}

B : 2 (2.52)
=pg + 2tan™? {ﬂ(’, - B tan( 2“9)}.
where By = bo and Bi = =
07 B, 17 B,
The objective function that is minimized has the form
n
minQ (84, Bi, g, p) = min Y [1 = cos(¢: - §)]
i=1 (2.53)

= miniznl: Z;l [1 — cos (qbl- — lip — 2tan™! {[g(’) + Bitan (Gi ;Me)})].

As regards the prediction of the unknown values ¢ based on the estimation of By, 1, ug, te
parameters, the obtained equation is

~ o A 0—i
¢ =iy +2tan”? {ﬁ(’) + Bo tan( 2'u9>}. (2.54)

When the circular calibration is based on the orthogonal distance, i.e. on the simultaneous
minimization of both vertical and horizontal distances used in Egs. (2.50) and (2.53),
respectively, the corresponding objective function is

Q(Bo. Bir e, ) = Z[l —cos(6; — 6;)] + Z[l — cos(¢; — ¢;)]
i=1 i=1

[1 — cos <9i — tg — 2tan! {.30 + Bitan <¢i ; #¢>})] (2.55)

n
; 0
n tan("_z'ue)—ﬁo
+Z 1—cos| ¢; — pp — 2tan™!
i=1

B
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and is minimized for the estimation of the unknown parameters. Then, according to the obtained
estimates Sy, By, fg, fig, the unknown values of & can be predicted by applying Eq. (2.51) for
new values of @, since these two methods rely on the same regression equation (i.e. Eq. (2.36)).
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Chapter 3 Directionality in extreme value analysis of linear
variables

3.1 General

In order to ensure that offshore and coastal facilities or structures are reliable both in terms of
structure and economic viability, it is of paramount importance to estimate accurately the
behavior of extreme values of the involved environmental variables during the structural and
risk assessment. Typical metocean parameters that are analysed in the context of extreme value
analysis through statistical approaches are wind speed, significant wave height and wave
period, which are mainly obtained by long-term (of the order of 30 years or more) hindcast data
bases and measurements with constant statistical properties in time. However, there are some
factors that affect wind and wave regimes and violate the assumption of stationarity since
spatial, temporal and/or directional variations may take place in the long-term study of a
phenomenon. For instance, the statistical characteristics of wind speed present seasonal
variations and consequently, affect the distribution parameters. The dependence of direction on
the variability of a specific parameter is also evident; a typical example is the generation of
higher waves at particular directional sectors compared to others at an offshore location.

In extreme value theory, there are two central approaches that are broadly used: the block
maxima and peaks over threshold approaches. In the former case equal-sized non-overlapping
bins (blocks) are generated to extract maximum observations while in the latter case
observations above a certain threshold, appropriately selected, are extracted; however, there is
not yet an established and robust methodology for the threshold selection; see, e.g. the recent
review of Biicher and Zhou (2018) for an edifying discussion on these two methods. Both
methods usually represent the metocean conditions in terms of amplitude and frequency
assuming a unidirectional behavior for practical reasons.

Directionality is the objective of this chapter, where directional variables are incorporated in
the peaks-over-threshold (POT) approach in order to investigate the dependence of extreme
values of wind and wave characteristics on a directional covariate. Although the beginnings of
extreme value theory date back to the 1920s with various works investigating the limiting
distribution of the largest order statistic (e.g. from R. von Mises, L.H.C. Tippett, R.A. Fisher),
the first attempts to incorporate directionality in extreme value models was made in the early
1980s (see, e.g. Graham (1981) and Moriarty and Templeton (1983)). In this connection, only
recently directionality has been adopted as a covariate in the formulation of metocean design
criteria since the dynamic behaviour and performance of marine energy devices is affected by
directionality characteristics (see, e.g. Philippe et al. (2013)).

In the subsequent sections of this chapter the impacts of wind and wave directionality for
specific types of wave energy devices and foundations of wind turbines at sea are discussed in
order to emphasize the benefit from considering directionality features during the design of
such structures. Next, a short overview of the basic concepts from the classical extreme value
theory is presented along with some well-known methods for threshold selection and
declustering. Then, the directional extreme model is analytically described and some
modifications are introduced as regards the estimation of extreme parameters.
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3.2 Response of marine energy devices to directionality

In the context of ocean energy technology, the knowledge about the extreme behaviour of wind
and wave features including directional dependence is crucial; see, e.g. Larsén et al. (2015). For
instance, most of the support structures for offshore wind turbines, either fixed or floating, are
non-axisymmetric (apart from monopile foundations) leading to different operational response
and capacity as regards loading intensity from metocean characteristics and fatigue
performance. The fact that the overall cost of energy can be lowered through the continuous
development of design of such structures and improved risk assessment techniques render
directionality an integral part of design optimization, and reliability and safety maximization.
On top of that, current regulations and standards from well-established organizations related to
engineering design principles for structures at sea, such as the American Petroleum Institute
(API) and the Det Norske Veritas (DNV), recommend as well the consideration of directionality
to ensure proper structural safety.

The effects of directionality on some well-known wave energy converters are presented and
different types of floating structures for offshore wind turbines, with low and high degree of
influence from directional features, are also addressed.

3.2.1 Wave energy converters

Typically, offshore waves propagate towards a wave energy device, deployed offshore, from a
range of directions thus, this device has to cope with this variability. The capture of energy from
offshore waves can be achieved if the wave energy device has either a sufficient compliant
mooring system that allow it to be aligned with the orientation of the device to the mean
direction (for efficient power conversion) or a symmetrical frame. On the other hand, as the
waves are travelling from deep to shallow waters, they are refracted while approaching the
shore and they end up travelling at right angles to the shoreline regardless of the original
direction of propagation. Hence, wave energy devices can be placed on the shore since the wave
direction can be easily determined in advance due to this natural phenomenon.

Based on the effects of directionality in the performance and efficiency of wave energy
converters (WECs) deployed offshore or nearshore, indicative examples from existing
advanced technologies with different working principles, horizontal sizes and orientation are
presented dealing with WECs whose performance is either highly affected by the incoming
wave front or its influence is considered negligible.

WECs highly influenced by wave direction

Attenuators and terminators are the most common types of WECs whose performance is highly
influenced by their orientation with respect to the prevailing direction of a given sea state.
Specifically, attenuators are elongated floating devices that are oriented parallel to the wave
direction, with a horizontal extent comparable to the wavelength, which lie in a predefined place
thanks to moorings on the seabed. The incoming wave that passes along the device generates
movements within the device that in turn exerts force on a turbine that produces energy. The
most well-known attenuator is the Pelamis (http://www.emec.org.uk/about-us/wave-
clients/pelamis-wave-power) which is the first commercially viable device that generated
energy from the waves and provided electricity to the grid via cable. It was developed and
manufactured in Scotland by an Edinburgh-based company and its first major demonstration
project with three full-scale devices, with a rated power of 750 kW each, was in Agugadoura,
Portugal. The Pelamis consists of a set of semi-submerged cylinders that are linked by hinged
joints (right representation of Figure 3-1). The motion of the joints (in the heave and sway
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directions) induced by waves is resisted by hydraulic rams, which pump high-pressure oil
through turbines driving electrical generators for power generation.

Shore Near shore Off-shore
Limpet type Oyster type Pelamis type

Wells turbine turns in Power Main
same direction irrespective conversion flotation
of airtflow direction module segments

Incoming - x Sea
wave forces air surface
out of Limpet

Power cable

Seabed

Oscillating water column Oscillating wave surge converter Surface following attenuator

Figure 3-1. Types of WECs (Source: Tavner (2017)).

In opposition to the attenuators, terminators are oriented perpendicular to the predominant wave
direction. Two typical forms of terminators are the oscillating water column (OWC) devices
and the oscillating wave surge converters (OWSCs); see also left and middle representations of
Figure 3-1. OWC devices consists of a partially submerged part (bottom-fixed, shore-mounted
or floating) forming an air chamber. As the free surface of the water is risen inside the chamber
due to the incident wave, the volume of air enclosed by this chamber is compressed. Then, the
compressed air escapes through an aperture above the water column, which is connected to a
bidirectional air turbine mounted on top of the structure for electricity generation. As the water
inside the chamber drops, the air pressure is decreased making the air go back through the
turbine. LIMPET was the first commercial-scale OWC, of 500 kW capacity, built in 2000 in
the Scottish island of Islay. In contrast to OWC devices, OWSCs are driven by the horizontal
particle motion of the wave, which is amplified in the near-shore environment. Oyster is an
example of a flap-type OWSC. It is a near-shore device, fixed to the seabed at around 10-16m
depth, and consists of a hinged mechanical flap. This flap is moved as the waves pass over the
device and drives two hydraulic pistons to deliver pressurised water to an onshore turbine for
the generation of electricity. The first full-scale demonstrator Oyster began producing power in
2009 when it was launched at the European Marine Energy Centre in Orkney, Scotland, where
wave energy was converted to electricity through a 315kW electrical generator driven by a
hydro-electric turbine.

WECs not influenced by wave direction

WECs that are able to capture energy from waves from any direction without having a principal
direction like attenuators or terminators belong in the category of point absorbers. Typically,
point absorbers are cylindrical in shape, with diameter smaller than a typical wavelength, and
constrained to one or more degrees of freedom (usually the heave motion) while most their
designs refer to a body symmetric about the vertical axis. Such devices have often relatively
simple structure compared to the other wave energy converters and can extract energy from
waves coming in any direction by oscillating with the movements of water for those that float
near/at the surface or for submerged devices, they move up and down due to the variations in
subsea pressure induced by the motion of waves. These movements can generate energy by
their transfer against some sort of resistance that can take various forms.

Two representative point absorbers that have reached an advanced stage of technological
development is the AquaBuOY and the Archimedes Wave Swing (AWS) with the main
alteration the non-fixed and fixed bottom end of the structure to the sea bed, respectively; see
also Table 1 of Bozzi et al. (2018). AquaBuOY consists of a floating buoy that is connected
underneath with a large cylinder. In the center and inside this cylinder, a piston is housed and
is connected with both ends of the buoy through a hose pump. This hose pump is stretched and
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compressed accordingly to the relative motion between the buoy and the piston and in turn the
flow of the pressurized water drives a Pelton turbine, generating power. The corresponding
rated power is 250 kW. On the other hand, AWS (http://www.awsocean.com/archimedes-
waveswing.html) consists of a completely submerged air-filled cylinder with a ‘floating’ upper
part, which moves vertically with respect to the bottom-fixed part, the so-called basement. The
changes in water pressure as wave crests and troughs passes over the device consecutively
induce the movement of the floater, which is converted into electrical energy via a hydraulic
system. A pilot plant that was deployed offshore the northern Portuguese coasts in 2004 had a
rated maximum power of 2 MW (Cruz and Sarmento, 2007).

The performance of a WEC in converting energy from waves is expressed through the capture
width indicator, defined as the ratio between the absorbed power and the incident wave power
of a wave-front equal to the width of the WEC times this width. According to the type of WEC,
the captured width ratio could vary with peak wave period but with wave direction as well.
Note that even in the case where the wave energy device is less sensitive to wave direction in
terms of power capture, it is possible that an array of devices is affected by the corresponding
layout and the spatial orientation, and the shadow effects as well. Interactions within a wave
farm can produce dissimilarities in power absorption; hence, some devices operate at their full
capacity while others at a more reduced rate.

3.2.2  Floating wind turbines

Concerning the recent technology of offshore wind turbines mounted on floating support
structures for water depths over 50 m, they can be roughly classified in three categories: i) semi-
submersible support wind turbines; ii) spar-type support wind turbines, and; iii) tension leg
platforms. The corresponding concepts are shown in Figure 3-2. In terms of affordability, the
most promising floating support structures are the first two types; however, further
improvements need to be considered for future large scale implementations. The first floating
pilot wind farm of 30MW capacity is based on spar-type structures, which are located offshore
Peterhead, Scotland. In addition, some full-scale prototype semi-submersible wind turbines
have been tested at sea, e.g. WindFloat installed off the Portuguese coast at 60m water depth in
2011.

Essentially, the motion stability of a floating wind turbine highly depends on the wind and wave
forces and moments acting on it, which vary in amplitude, direction and frequency over a
typical design life of approximately 25 years and generate structural vibrations and extreme
loads on various components of the structure. Since hydrodynamic characteristics differ along
with wind and wave headings, it would be valuable to have a better understanding of the
directionality effects on such structures to mitigate loads and improve efficiency. Considering
the characteristics of a spar-type floating wind turbine, Barj et al. (2014) revealed that the
aligned wind and wave conditions induce the highest extreme and fatigue loads for most
structure locations while including misaligned wind and wave conditions can be useful to
improve the estimation of extreme and fatigue loads. Moreover, Lyu et al. (2019) discovered
that longitudinal modes (surge and pitch motion) of this floating system are mostly dependent
on wind loads while transverse modes (sway and roll motion) rely mostly on the wave loads.
As regards heave motion caused by buoyancy, it seems that it is independent of wind and wave
directions.

Taking into account a triangular semi-submersible foundation, its asymmetric structural
features make it sensitive to wind and wave direction resulting to diverse hydrodynamic loads.
Specifically, Bachynski et al. (2014) studied the platform motions and tower loads in aligned
and misaligned wind and wave conditions for two triangular semi-submersible platforms,
among others, and showed that the former conditions caused the largest tower base fatigue
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damages while the latter contributed to slightly increased motions. Karimirad and Michailides
(2016) also concluded that motions, tension of mooring lines and functionality of a VV-shaped
semi-submersible floating turbine are not significantly affected when misaligned wind-wave
conditions are present in operational conditions. Furthermore, Antonutti et al. (2016) showed
by means of simulations that as regards wave direction, surge, heave and pitch are mainly
affected by inclination for collinear wind and waves while sway, roll and yaw are altered by
cross wave-and-wind cases. In Zhou et al. (2017) the performance of a Y-shaped semi-
submersible wind turbine in different load directions was investigated through model tests and
numerical simulations; the obtained results indicated that directionality affects the operation
and maintenance of this type of floating wind turbine and the corresponding impacts should be
predetermined thoroughly before installation in the offshore environment.

As regards the power efficiency of a floating wind turbine, the rotor adapts to the incident wind
direction through a hydraulic pitch system ensuring that the wind direction is perpendicular to
the disk formed by the rotor blade of the wind turbine as much as possible so that the captured
wind energy is maximized. However, abrupt changes in wind direction cause stress on the rotor
module of the wind turbine due to the constant disparities on load conditions. Furthermore, as
in the case of WECs, the efficiency of an offshore wind farm is influenced by wake effects.
Even small changes in wind direction can change the power output of the wind farm due to the
increase of power losses making the power production less predictable.

3.3 Introduction to extreme value analysis: basic concepts and theoretical
results

Let us consider a sequence of independent and identically distributed random variables
X1, X5, ..., Xy, following the cumulative distribution function (cdf) Fyx (or simply F). Let also
M, = max{X;,X;, ..., X, }, n € N, denote the maximum random variable of this sequence. In
order to describe the probabilistic behavior of M,,, the corresponding cdf Fy, (x) should be
evaluated. This can be done using the following relation:

Fy,(x) =P(M,, < x) =[[{z1 P(X; <x) = [F(x)]", forx €R, n € N. (3.1)

If the distribution F and the sample size n are known, the principal problem in extreme value
theory can be solved. However, it is rare in practice that the underlying cdf F is known. Even

Figure 3-2. Floating wind turbine support structures: (left) semi-submersible structure;
(middle) spar-type structure; and (right) tension leg platform (Wu et al., 2019).
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if F can be estimated from a given sample and replace the theoretical one in Eq. (3.1), small
discrepancies in the estimation of F can lead to significant discrepancies in F™ as n increases.

Accepting that F is unknown, it is essential to examine the asymptotic behavior of M,, near the
upper endpoint of the support of F (in its right tail), where extremes occur. Let us denote x, =
sup{x € R: F(x) < 1} the right endpoint of F. As n — oo, the cdf of M, converges to a
degenerate distribution on the upper endpoint x,which is

Fi, () = (3.2)

—00

{0, forx < x,
1, for x = x,.

Thus, the searching of a limiting distribution Fy;(x) (that will depend on n) is necessary such
that Fp,(x) = 7lim Fy, (x). To avoid degeneration of Fy,(x), M,, is modified by means of a

linear normalization expressed by M = o, x + u,,, where the quantities ¢;,, > 0 and u,, € R are
properly selected such that

Fy(x) = 1£i_r)§oMn(Unx + ) = AHEO[F(O-nx + )" = G(x). (3.3)

of all x € R, at which G is continuous. In the context of extreme value theory (i.e. the theory
for studying the stochastic structure of the rv M,,), except for finding all possible (non-
degenerate) distributions G that satisfy Eq. (3.3), the distributions F have to be characterized
for which sequences of {a,,} and {u,,} exist such that Eq. (3.3) holds for any limit distribution.
Before the formulation of the proposition that ensures the existence of the limiting distributions
for M;,, two fundamental concepts for extreme value theory are introduced, the concepts of
maximum domain of attraction and max-stability.

Let F a non-degenerate cdf (of X). F is said to belong to the maximum domain of attraction of
cdf G, i.e. F € D(G), if there exist sequences of {ag,,} and {u,}, such that F satisfies the
relationship

rlli_IEOP(Mn S OpX + Up) = rlli_I)?o[F(o-nx + u)]" = G (x). (3.4)
A non-degenerate cdf G is max-stable if there are constant u,, and a,, > 0, foreachn = 2,3, ...,
such that [G (o, x + u,)]™ = G(x). An alternative definition is derived as follows: “A non-
degenerate cdf G is max-stable if, for eachn = 2,3, ..., the cdf’s G™ and G are of the same type.”
If G, and G, are two cdf’s of the same type, i.e. G,(x) = G (ux + ), and F € D(G,), then
F € D(G,). From the above definition we see that every max-stable distribution is a limit
distribution for maxima of iid rv’s (Embrechts et al., 1997).

Now, the possible limiting distributions for M,, are provided by the theorem attributed to Fisher
and Tippett (1928) and Gnedenko (1943), stating that if there exist two sequences of constants
{o, > 0} and {u,} such that (M,, — u,)/0, converges in distribution to G, with G a non-
degenerate distribution function, then G belongs to one of the three families:

i) Gumbel family (type I): G (x) = exp {—exp [— (%)]}, x€ER,0>0;
X< u

0,
ii) Fréchet family (type II): Gg(x) = {exp {_ (ﬂ)‘a}

g

x>ua>0;

iii) Weibull family (type 11): Gy, (x) = {eXp{‘ - (%)a]}x <ma>0
1, X =,
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where 4 € R and o > 0 are the location and scale parameters, respectively, and a > 0 (for
types Il and 111) is the shape parameter. The three different limit distributions are called extreme
value distributions and the associated pdfs for types I, Il and 11, respectively, are given by:

o[- (51 exo oo - (5]

9o(x) = o , X ER, 0> 0;
0, Y

gr(x) =4a x — py~(a+d) R |
a x_# a-1 x_‘Ll a

gw(x)={5( o ) EXP{_[_( o )]} x<pa>0
0. X = U

Note that every max-stable distribution is of extreme value type and conversely, each
distribution of extreme value type is max-stable. In this way, it is ensured that the normalized
rv M, has a limiting distribution that must take only one of the above specified forms, as the
sample size increases, regardless of the distribution F of the X;, i = 1, ..., n. In this sense, the
Fisher-Tippett-Gnedenko theorem is an analogous result of the central limit theorem; in the
latter theorem, the limit of the sums of iid rv’s is described while in the former the limit of
maxima is of interest.

When each rv X,, has a given cdf F, it is important to know which (if any) of the three types of
limit distribution applies. von Mises (1936) established some simple sufficient conditions, such
that the maxima of a distribution function F with density f converge to some specific
distribution function G while various necessary and sufficient conditions, involving the “tail
behaviour”, are known for each type of limit; for the complete proofs, see de Haan (1976).
However, in real applications the underlying assumption of iid rv’s is usually not satisfied. On
these grounds, Leadbetter (1974) proved that these distributions hold also for dependent rv’s
provided that there is long-range dependence at extreme levels

These three limit distributions can be integrated into a single parametric representation, as
suggested by von Mises (1936) and Jenkinson (1955), widely known as the Generalized
Extreme Value (GEV) distribution. The cdf of GEV is expressed in the following form:

exp | ~[146 (B

g

X—u
E#01+E—=>0

G(x;p,0,8) = (3.5)

X —
- - , =0,x ER,
exp [ exp( > )] 3 x
with u, g, & denoting the location, scale and shape parameter, respectively.
The corresponding pdf is

g(x(;lu, 0,§) e
X — X — N1~
=!;[1+€( G#)] exp{—[1+f(T'u)] },fth 6

Gew |- 52 exp e [- (52 £=0

-(1+1/8)
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Notice that the shape parameter &, the so-called extreme value index, characterizes the tail
behaviour of GEV distribution at its upper end, a significant feature corresponding to different
behaviour of extreme events both in magnitude and frequency; i) for ¢ = 0, the Gumbel family
is obtained, which is unbounded with a tail of exponential type; ii) if £ > 0, the Fréchet class
is bounded from below with right heavy tail, and; iii) if £ < 0, GEV is reduced to the Weibull
class is bounded from above with finite upper endpoint. Summing up, the two fundamental
theorems mentioned above provide a model for the description of maxima values, which in
practical applications are partitioned into blocks and are called block maxima. However, the
rational of block maxima method has a significant limitation; it discards important information
of the extremal behaviour of a variable that usually lasts for some period of time leading to a
less representative selection of extreme values. Moreover, the choice of the block size is a trade-
off between bias and variance. A large block size leads to large variance in estimation due to
the generation of few block maxima; on the other hand, a small block size may lead to bias due
to the poor approximation of the asymptotic distribution.

An alternative parametric model for the estimation of the tail behaviour has been proposed by
Pickands—Balkema—de Haan Theorem (Balkema and de Haan, 1974; Pickands, 1975) and is
based on the number of excess values k over a high enough (predefined) threshold u from the
initial set of observations for statistical inference. Let X;, X5, ..., X;, be a sequence of iid rv’s
with common cdf F and let also Y; = Xy —u, j=1,..,n,, with X denoting the
observations that exceed the threshold . The distribution of excesses (Y3, ...,Ynu) F, can be
described using the conditional probability E,(y):= P[Y < y|X > u]. E, can be written in
terms of F as follows:

PX<y+uX>u] F(y+u-FQ)
P[X > u] - 1-Fw)

E,(y):=PlY <y|X >u] = (3.7)

Solving Eg. (3.7) with respect to the unconditional distribution F(x) the following
representation is derived:

F(x) = (1 — F(u))Fu(x —u) + F(uw).

The limit theorem by Pickands—Balkema—de Haan states that the distribution of exceedances
(X — w) E,(y) for large values of the threshold u can be approximated by the generalized Pareto
(GP) distribution defined by:

-1/
H(y;0,8) =1- (1 + i—y) , (3.8)

u

for y>0 and 1+ ¢y/a, >0, where ¢ is the shape parameter and o, > 0 is the scale
parameter, if F belongs in one of the three domains of attraction of the GEV distribution such
that lim sup |E,(y) —H)|=0.

ulxyosys<x,—u

Hence, for large enough u, the distribution of exceedances over u is estimated by E,(y) =
H(y). For & = 0 the domain of y is [0, +) and G follows a reparametrized version of Pareto
distribution when ¢ > 0, and an exponential distribution when & =0, and for £ < 0, it is
[0, —a,,/&] and GP distribution becomes a Pareto type Il distribution. Note that GEV and GP
distributions share the same shape parameter & while the scale parameter o, is defined as a
function of the location and shape parameters of GEV, given by a,, = ¢ + &(u — ). Similarly
to GEV, the shape parameter of GP determines the tail behaviour: for & < 0 the distribution has
an upper bound, for & > 0 the distribution has no upper limit and for ¢ = 0 is also unbounded.
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As regards the pdf of GP, it yields correspondingly:

-(1+1/8)
(L2 s
hu(y;au,f)=<"1u o (3.9)
ka—uexp (—G—u>, &E=0.

The examination of the rv Y leads to an alternative approach, called peaks-over-threshold (POT)
method, the theoretical background of which was developed from hydrologists during the 80s;
see, e.g. Todorovic (1978), Revfeim (1983). Summarizing, the GEV distribution G describes
the limit distributions of the normalized maxima while the GP distribution H is the limit
distribution of the excesses over a high threshold .

3.4 Return period and return level

After assessing the adequacy of the model through goodness-of-fit tests, the return levels,
associated with certain return periods, can be estimated. For a specific event, the T —year return
period denotes that there is 1/T probability (on average) in any particular year that the T —year
event will be exceeded, under the assumption of stationarity. For a given return period T of
interest with an associated return level x;, that the maxima can reach, we have that:

F(xr) = P[M, < x7]
=1-P[M, > x;] (3.10)
=1-1/T.

Hence, the return period is definedas T = 1/[1 — F(x7)].
Supposing that the GP distribution is suitable for modelling the exceedances and having

estimated its unknown parameters by the ML method, from Eq. (3.7) the probability of a rv X
exceeding a threshold u is

PIX > x] = p, [1 + ¢ (x; u)]_l/s, (3.11)

u

where p,, = P[X > u], i.e. the probability of threshold exceedance. Introducing the term ‘mean
exceedance rate’, which is the average number of observations above the threshold u per year,
an estimate of p,, can be given by the empirical distribution function

Py =— (3.12)

where n,, is the number of observations exceeding the threshold u. Let it be noted that p,, is
also the ML estimate of p,,, since the number of threshold exceedances follow the binomial
distribution Bin(n, p,,).

Now, assuming that n measurements X, ..., X, were taken during n,, observation years then it
is implied that during T years there are nT /n,, observations. Thus, the x; —return level (that is
exceeded on average once in T years) is obtained by rearranging Eq. (3.11) and using Eq. (3.12).
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(3.13)

3.5 Threshold selection for excess models

The a priori selection of a suitable threshold implies the existence of an additional unknown
parameter for the GP distribution, which may affect the validity of the estimates and is still an
open issue with no established approach. As with the block size in the block maxima method,
it is a trade-off between bias and variance. A low threshold will result in large bias and low
variance leading to incorrect results for the obtained estimates since less representative extreme
data are taken into account whereas a high threshold will result in small bias and large variance
in the estimation of the parameters leading to unreliable results due to the smaller sample size.

A plethora of statistical techniques has been proposed for the determination of the appropriate
threshold; see, e.g. the reviews of Scarrott and MacDonald (2012) and Langousis et al. (2016)
for more details. According to the latter work, these methods can be roughly categorized as
follows: i) graphical methods where one searches for linear behaviour of the GP parameters (or
related metrics) within a range of thresholds, such as mean residual life plot and parameter
stability plot; ii) goodness-of-fit-tests that detect the lowest threshold for which the GPD is
suitable either by minimizing the asymptotic mean square error of the estimators or quantifying
the deviations between the theoretical distribution and the empirical cdf, and; iii) non-
parametric methods that determine the appropriate starting point of the extreme region of the
data record. Since each method leads to different threshold choices, the sensitivity of the
inferences (as regards parameter estimation) is evaluated as well. Thus, in the subsequent
sections, a summary of the most widely used approaches that will be used in this thesis is
presented.

Mean excess plot

Following the threshold stability property of the GP distribution (i.e. shape and modified scale
parameters remain constant for higher values of the threshold) and supposing that the excesses
over a threshold u* follow this distribution, Davison and Smith (1990) suggested using the
mean of the GP distribution

0,,*
Em—wm>uﬂ:T%ﬁ (3.14)

for & < 1, which is called mean excess (or mean residual life) function of X. For any threshold
u > u*, the above expectation takes the form

oy Oy t+u

1-¢& 1-¢&°

E[X —ulX >u] = (3.15)

which is linear in u with slope ¢ /(1 — ).

Given an iid sample X, ..., X;;, an estimator of Eq. (3.15), say é(u), is the empirical mean
excess function defined as:
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ity (X = Wlix s

Z:lzul I{Xi>u}

6(u) = : (3.16)

where I(x,,y = 1if X > w and 0 otherwise, meaning that it is estimated as the ratio of the sum
of the exceedances over the threshold and the total number of observations exceeding the
threshold. The properties of mean excess function are described in Hall and Weller (1981). A
proper threshold can be obtained by plotting é(u) as a function of the threshold u and
identifying the lowest value of threshold above which é(u) increases approximately linearly.
This plot has been implemented in practice by Hogg and Klugman (1984); Begueria (2005);
Sanchez-Acrcilla et al. (2008) among others.

Threshold stability plot

An alternative graphic technique focuses on the stability of parameter estimates for a range of
threshold values u; see Section 4.3.4 of Coles (2001). If a GP model is acceptable for fitting
the excesses over a threshold u*, then for increased thresholds, e.g. u > u*, the excesses should
also follow a GP distribution with the same shape parameter at threshold u* and a new scale
parameter. The scale parameter a,, is estimated by o,, = o+ + &(u — u*). The modified scale
parameter can be reparametrized as a,, — &u, which is constant with respect to u. Consequently,
the estimates of the shape and modified scale parameters remain constant above u*, if excesses
follow the GP distribution with «* being a valid threshold.

Estimates of the shape and the modified scale parameters are plotted against u and the
appropriate threshold corresponds to the lowest threshold value for which these estimates are
nearly constant. Mean excess and threshold stability plots can be applied simultaneously to
obtain the optimum threshold. The main drawbacks of the above graphic approaches as a
method of threshold selection is that they require expertise from the analyst for the
interpretation of these diagnostics and they can be quite subjective. In addition, as a non-
automated method, it is not suggested when multiple locations need to be examined in the
context of extreme value analysis.

Percentiles

Among the most common rules of thumb used to derive threshold values is the percentiles. In
the relevant literature, a range of percentiles have been proposed. For instance, Dumouchel
(1983) suggested the upper threshold of 10%, but with inadequate theoretical justification,
while Eastoe and Tawn (2012) used the 95 percentile for river flow data. Grabemann and
Weisse (2008) chose to represent extreme conditions of wind speed and significant wave height
by applying the 99" percentile while in Arns et al. (2013), percentiles varying between the 97.5%
and the 99.7" percentile were examined in order to derive the most appropriate threshold for
water level data from tide gauge records in various locations; the 99.7" percentile was identified
as the most appropriate for the examined study areas.

3.6 Declustering

Regarding the extreme values of metocean parameters, it is valid that if the time step of the
series is smaller than a typical duration of an extreme event (i.e. storm) then they occur in
clusters, implying that there is temporal correlation between sequential values. However, in
order to apply the POT method, it is essential to ensure that there is mutual independence
between extreme events. The prerequisite of independence is achieved by means of
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declustering, a method that takes out the dependent observations from a correlated series of
extreme events so that independent threshold exceedances are extracted reasonably. This
approach was implicitly applied first by Davenport (1964) and its main principle is to select the
maximum value between consecutive up- and down-crossings of the mean. Several declustering
techniques have been developed in the context of extreme value analysis, and the outline of this
procedure is summarized below:

i. Define clusters of observations in case of consecutive exceedances based on an empirical
criterion or parametric models (e.g. Markov chain models, Bartlett-Lewis process).

ii. Identify the highest value in each cluster, called declustered peaks.

iii. Assume the declustered peaks are independent and fit GPD to these peaks.

It is evident that the definition of the cluster entails some degree of subjectivity or arbitrariness,
especially when empirical rules are applied, affecting in turn the results. On the other hand, in
Davison and Smith (1990) it was stated that if a reasonable selection is made as regards the
average number of clusters per unit time for the identification of clusters then the results seem
to be insensitive to this precise value. Moreover, Ledford and Tawn (2003) introduced a
diagnostic tool to evaluate the declustering of a series.

A brief overview of the most commonly used declustering methods for POT models is provided
below.

Runs declustering method

Runs declustering method, described by Smith and Weissman (1994), assumes that successive
threshold exceedances form a separate cluster as long as their duration does not surpass a set
run length, i.e. a predefined minimum interval between two successive peaks indicating the
termination of a cluster. As in the case of the threshold selection u, there is no formal procedure
for the selection of run length; thus, in order to avoid improper choices of run length, which
may lead to bias or high variance, the choice of the run length relies on the common sense
experience and the physical background that governs the variable of interest. For instance, when
studying ocean waves variables, the run length should be large enough so that the entire duration
of fully developed sea states is included. In the relevant literature, a run length of 30h to 96h is
chosen to ensure independence between the declustered peaks (Morton et al., 1997; Fawcett
and Walshaw, 2007; Kapelonis et al., 2015; Lerma et al., 2015; Samayam et al., 2017; Santos
etal., 2017).

Intervals declustering

A more sophisticated and automatic declustering scheme was developed by Ferro and Segers
(2003) with the aim of determining the run length from the data. It is based on the a priori
estimation of the extremal index 6, which represents the proportion of the times between
threshold exceedances that can be considered as the times between independent clusters. A
review of estimation methods for the extremal index can be found in Ferreira (2018).

The main difference with runs declustering method is that it does not involve any arbitrary
choice in the process of obtaining independent clusters of exceedances and that the automation
of the technique lies in the interconnection of threshold selection and declustering, meaning
that a different extremal index is chosen with changes in the POT threshold. This approach has
been applied by Acero et al. (2011); Cebrian and Abaurrea (2006) and Della-Marta et al. (2009)
among others while it was also adopted in this thesis.
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Declustering Algorithm (DeCA)

In the context of acquiring statistically independent values of significant wave height, a new
declustering method was developed by Soukissian and Kalantzi (2009) that detects sequences
of almost independent maxima from the initial time series in hand based on the physical features
of a sea-state system. Specifically, large wave energy reductions between local maximum and
subsequent minimum values of significant wave height imply the transition to a different sea-
state system and hence leads to the identification of clusters of extreme events from the data
series that are independent. After a simple filtering procedure of the initial time series using
monotonicity for the detection and removal of stationary sequences, the local maxima and
minima are identified and then the corresponding wave energy differences are calculated. If the
wave energy reduction is lower than a predefined percentage, then it is considered that the
examined sea-state system has ended forming thus a separate independent cluster. Again, the
maximum value within each cluster is extracted to fit the GPD model. A rational selection of
energy reduction percentage is over 80% that was also adopted in that work. The use of this
declustering technique can be found in the studies of Soukissian and Arapi (2011).

3.7 Including directionality in extreme value estimation

Extremal properties of various environmental parameters have been modelled taking into
account the directional behaviour as a covariate in order to obtain an integrated and more
accurate model for the estimation of the corresponding design values. For instance, Moriarty
and Templeton (1983) estimated extreme wind gusts for six directional sectors by fitting a GEV
distribution in the design of large buildings. Maximum wind speed as a function of direction
has also been modelled by Coles and Walshaw (1994), considering a dependence structure
across directions, because their a priori division leads to correlated directional sectors, and
adapting techniques developed for spatial extremes. Similar approaches for modelling extreme
wind speed with a directional dependence structure have been presented by e.g. Simiu et al.
(1985) and Solari and Losada (2016). A methodology for the appropriate selection of
uncorrelated directional sectors has been proposed by Folgueras et al. (2019), which reduces
also the uncertainty in the estimation of design values of wind speed. Sea currents have been
investigated in the work of Robinson and Tawn (1997) by means of a parametric model for
extreme current data by handling not only directionality but temporal dependence and non-
stationarity as well.

In a series of papers, Ewans and Jonathan (2006, 2007, 2008) and Jonathan et al. (2008) have
highlighted the importance of including directionality when studying extreme wave design
criteria especially in storm-dominated regions. In the above studies, extreme value modelling
of storm peak significant wave height was based on GP distribution with its unknown
parameters expressed as a function of direction while a risk-cost approach was proposed for the
construction of directional design criteria.

3.7.1 Extreme value directional model

Let a sample with values for a linear variable X along with the corresponding values for the
directional one, say 6. Assuming that the GP distribution describes the extreme observations
above a threshold u, which is considered independent of the directional variable, and according
to Eq. (3.8), the cdf is given by

N —1/8(65)
1 +@> ,y >0; 0, >0, (3.17)

HYj|9j.u(y; owé)=1- ( O'u(ej)
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for 1+ £(6;)y/a,(6;) > 0, where shape and scale parameters are both expressed as functions
. ny
of 9], with {9]}]:1

In the context of estimating the unknown parameters, as noted by Robinson and Tawn (1997),
it is expected that they vary smoothly with direction; thus, a Fourier series expansion is used
for the description of this (angular) dependence, which assures a periodic behavior of the
estimates in terms of the direction. In this respect, the general form of the Fourier series is for
¢ and gy,

Zi:o Y5-1Apkty(k6) and Z;{Z:o Y 5-1Bpty(k6), (3.18)

respectively, where k = 0, ..., p denotes the order of the Fourier model, and t;, t, is the cosine
and sine function, respectively. For example, the first order Fourier model results in the
following relationships:

5(9) = AlO + A11COS(9) + Alein(Q) and 0-(0) = BlO + 311COS(9) + Blein(G).

As noted by Jonathan and Ewans (2007), the proper order of the model is determined by the
directional dependence of the data sample in hand; the more complex the directional
dependence that characterize the data, the higher the model order is.

The unknown parameters Ay, and By, b = 1,2, k = 0, ..., p, are estimated by applying ML
estimation. The likelihood of the corresponding data sample {Yl-}?;‘l is obtained by

ny

L ({Abk}, {Bor}; {YJ}?;) - 1_[ au(lgj) ( ju((é))

Jj=1

-(1/¢(6;))-1
> ' (3.19)

and the negative log-likelihood (for £(6;) # 0) by

§(6y)
2= Z[logau(9)+<1+€(9))l (1+0u(0) )] (3.20)

ML estimates can be determined by setting the partial derivatives of £ with respect to A, and
By, set of parameters equal to zero, i.e.

R ) { IS YO {()
ot 2w (e

- (1 + E(‘91')) <0u(gj)(ij);%9jm> ty(k6;)

and

s~ eyl el )
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respectively.

The design values for a given return period can be estimated by using Eq. (3.13) and replacing
the constant estimated parameters £ and &,, with the ones expressed as function of 6.

Penalised maximum likelihood

In this thesis, a penalty criterion is recommended for the extreme value estimates to ensure that
that the directional dependence of ¢ and o, is sufficiently described and that the solution is
stable even if either the order of the Fourier model is high or the weighting constant of the
penalty term is small, as is presented in Section 4.5. This penalty term is based on the absolute
difference between the estimates and the initial values of the parameters obtained from the
independent fits calculated using data from successive directional sectors of 45-degree width
so that £(6) and a,,(8) are consistent with & and a,, obtained from the independent fits of each
directional sector. As is discussed in Section 4.5, the minimum number of the 45-width sectors
with sufficient amount of data should be set, which depends on the order of the Fourier model,
along with the amount of data of each sector per se. With the inclusion of the penalty term in
the model fitting, the terms that are not consistent are penalized appropriately. In this case, the
negative log-likelihood with the penalty term takes the form

2(1+2k)
to=ttw Y [5,=3] (3.21)
i=1

where w is a constant that gives the appropriate weight for the penalty term in model fitting and
9, 191' denote the initial and final values of the unknown parameters, respectively, with k
indicating the order of the model. In Ewans and Jonathan (2008), a roughness penalty, selected
using the cross-validation criterion, was adopted in order to obtain as smooth as possible
estimates. In Figure 3-3, a preliminary result is presented for two locations, Ligurian and
Aegean Sea (further analysed in Section 4.5), which shows the instability of a high order Fourier
model. The solid lines denote the form of the estimated parameters ¢ and o, obtained from the
standard ML and the dashed lines denote the penalized version of ML withw = 1. These results
clearly show the instability of the standard ML method when the order of the Fourier model is
high. For these particular orders, the Fourier model has a better fit compared with the
independent fits with data from eight consecutive sectors of 45-degree width while the standard
directional model shows a rather oscillatory behaviour with a poor performance.

The directional extreme value model can be determined if the order of the model k is specified
and the constant w is selected. In order to justify whether the inclusion of the directional
covariates into the model is significant and judge which order of the Fourier model is the most
adaptable in terms of capturing directional dependence, the likelihood-ratio (LR) test can be
applied (Coles, 2001; Reiss and Thomas, 2007). This test is widely used when nested models
are compared. Suppose that the basic model M, is nested within model M, which is more
complex (e.g. the zeroth- and first-order directional models, respectively) with values of the
negative log-likelihood ¢, and ¢, respectively. The LR test statistic is then expressed as

Tir = —2(€o(My) — £1(My)). (3.22)

Under the null hypothesis that model M, is the true model, the distribution of T is evaluated
by assessing whether the additional complexity of model M, leads to a better improvement in
terms of performance compared to model M,,. The asymptotic distribution of T g under the null
model is a yZ distribution with k denoting the degrees of freedom equal to the difference among
the number of the models parameters. As long as the sample size is reasonably large, it is
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common to assume that this distribution is valid for finite samples as well. Consequently, the
null hypothesis is rejected at the a level of significance if T; g exceeds the (1 — a) quantile of
the xZ distribution. Hence, model M, is selected in favour of model M.

Ligurian Sea: Estimated parameters for methods Aegean Sea: Estimated parameters for methods
threshold stability & intervals mean excess & intervals
T T

(up) parameters
(up) parameters

Estimated ¢ (down)and o,
Estimated ¢ (down)and o,

06 L L L ! E|
4 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Direction (deg) Direction (deg)

() (b)

Figure 3-3. Estimated parameters & and o, for (a) a 5™ and (b) a 4™ order Fourier model
with the consideration of the penalty term (dashed line) and without (solid line). Circles
represent the estimates from the independent fits of the 45-degree sectors.

Given the order of the Fourier model for £(0) and o,,(8), the constant w has to be set. This
selection is based on the distance between the values of the estimated parameters ¢ and g, from
the independent fits and the corresponding ones from the directional model. The statistical
metric that was selected due to the fair treatment of positive and negative differences is the
mean absolute error. The optimum value for w is selected when the metric is minimized for
both parameters simultaneously.

An example on the decision of the order of the Fourier model through the LR test and the
selection of the constant w through the mean absolute error is provided for an offshore location
in the Ligurian Sea with geographical coordinates (43.25°N, 9.75°E). The particular location
(called hereafter Ligurian) was selected in order to have sufficient data for all directional sectors
of width 45° and assess more reliable the directional model. The pairs of models used to perform
the LR test are G, with G, G; with G,, G, with G5, and G5 with G,. The first pair is used in
order to verify whether the use of directional model is rational for the data examined and the
rest pairs to assess the performance of each order. The critical value corresponding to yZ for
a=0.05, with which the Ty i is compared to, is the same for each case and equal to 9.4877, since
the difference in the number of parameters remains the same (i.e. k=4) for each comparison.
The obtained results are presented in Table 3-1 with all models being evaluated with w=1.
Changes in w do not alter the result qualitatively. Based on the values of T g, compared to the
critical one, with the smallest p —value, the third order directional model seems to be the most
appropriate for Ligurian. Let us note that there is weak evidence to accept the null hypothesis
for the comparison between G, and G,, since the p —value is rather high denoting high
uncertainty of the result.

In Figure 3-4, the functional forms of the estimated parameters for the first up to the forth order
of the directional model is presented along with the corresponding estimates from the data
obtained from successive directional sectors of width 45°. This outcome also verifies the above
result; the third order model outperforms the first and second order models while the difference
with the fourth model is rather unnoticeable. For w=0.18, the minimum value of mean absolute
error for both estimated parameters is obtained as shown in Figure 3-5. The above results are
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obtained for the 95" percentile as regards threshold selection and the intervals declustering
method.

Table 3-1. Value of T, ; along with the corresponding p —value for various directional
model comparisons for Ligurian Sea.

Pairs compared Tir p —value
G, and G, 0.332 0.9877
G, and G, 39.508 108
G, and G5 56.606 101
G; and G, 21.414 10+

Estimated parameters for different models with w =1 for Ligurian
T T T T T

Estimated £ (down) and ¢, (up) parameters

| | L I
0 50 100 150 200 250 300 350
Direction (deg)

Figure 3-4. Directional model of 1%, 2", 3" and 4" order along with the independent fits
from the successive directional sectors of 45-degree width for Ligurian Sea.

MAE values for Ligurian
T

0.15 T T

MAE values for &
MAE values for

0.05 0.05

) L | L L | L I 0
0 0.02 0.04 0.06 008 01 012 014 0.16 018 0.2
Weight

Figure 3-5. MAE values for various weights for Ligurian Sea.

3.7.2 Parameter uncertainty

Based on the expressions of the Fourier series for the estimation of ¢ and g, the corresponding
asymptotic variances can be calculated so that confidence intervals for the unknown parameters
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can be derived. The asymptotic covariance matrix of a ML estimator is provided by the inverse
of the (observed) information matrix I; = E[02€/0A,,0Ap,] and I5 = E[02€/0By,0Bp,|,
which is actually the Hessian matrix (i.e. the matrix of the second derivatives of £). The standard
errors, SE; andSE g, are the square roots of the diagonal elements of the asymptotic covariance

matrix. Thus, the 100(1 — @)% confidence intervals of the parameters {Abk}f,'fl,kzo and
{Bbk}ﬁﬁl_ho are obtained, respectively, by:

Abk i Za/stA and Ebk i Za/ZSE§' (323)

where z,, is the desired critical value (e.g. for 95% confidence interval z,,, = 1.96). The
above description is valid provided that the values of ¢ fluctuate below 1/2. Non-regular cases
(i.e. for & = 1/2) are not considered in this thesis.

An alternative method for obtaining confidence intervals associated with the estimated
parameters is through bootstrapping, introduced by Efron (1979) for samples collected under
an independent framework. In extreme value analysis, typically bootstrap method is used in its
non-parametric version (i.e. with no assumptions on the distribution of the available sample),
and resample the original sample, while the parametric one simulates ‘new’ data from the
estimated model); the former case is described in this section. Bootstrapping requires random
resampling with replacement from the initial sample to obtain ‘new’ subsamples and construct
confidence intervals for the parameters without assuming a specific parametric distribution,
rendering the process quite straightforward, both algorithmically and numerically. Various
bootstrap methods have been reviewed by Tajvidi (2003) for the construction of confidence
intervals for the GP distribution parameters and quantiles and it was concluded that for small
sample sizes none of the bootstrap methods gives satisfactory results. Moreover, Coles and
Simiu (2003) proposed an empirical correction of the bootstrap estimates, based on a bias
correction to the bootstrap parameter estimates, since there is a tendency of the bootstrap
procedure to provide generally shorter tails than the one from the original time series. In this
respect, the bias-corrected and accelerated (BCA) bootstrap method, developed by Efron
(1987), is applied since it attempts to correct for both bias and skewness in the distribution of
bootstrap estimates; for more details, see Efron and Tibshirani (1993).

Suppose that h is the parameter of interest and let us denote by h* a bootstrap replication of 2
obtained by resampling with replacement from the original data sample. The underlying
assumption of BCA method is that a monotone transformation ¢ = m(h) exists such that
d~N(¢p — zo(1 + ag), (1 + ag)?), where z, and a are the bias-correction and acceleration
constants, respectively. The former constant is related to the proportion of bootstrap estimates
that are less than the corresponding estimate of the original sample and its estimate can be
provided by

(3.24)

#h*(r) < h
2o =®71 {—(;) }

with @ denoting the standard normal cumulative distribution function and r =1,2,...,R
denoting each bootstrap sample with total number of bootstrap samples R. The latter correction
is proportional to the skewness of the bootstrap distribution and can obtained by the jackknife

method. Let E(i), i =1, ...,n, denote the value of the estimate based on the entire original data
sample apart from the i —th observation. An estimate of the acceleration constant is given by

Z?zl(ii(') — ’Al(i))g
W e N
6 [Zi=1(h(') - h(i)) ]

a= (3.25)
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where fl(.) =n"1 2?21 Fl(i).

Having the values of 2, and &, the interval of BCA method is given by (A(@), A(®2)), where

_ . 2o+2(® _ . (1-a) ) (@) _
a, = (ZO + —1—a(20+z(a))) and a, =& (zo + with z the 100a —th
percentile point of a standard normal distribution.

20+Z
1—&(20+Z(1_“))

Given the original (random) sample of pairs of one linear and one directional variable (x, 8),
say {s;}i-,, the procedure of the adopted bootstrapping is summarized in the following steps
for estimating the confidence intervals of the extreme value parameters:

Step 1: Estimate the unknown parameters (6u,$) of the GP distribution (as functions of 6)
from the initial sample using the ML method described above.

n
Step 2: Create r (random) samples {si(r)}. o= 1,...,R, by random resampling with
=

replacement from the initial sample and obtain the estimates (6;, é*)
Step 3: Repeat step 2 for a large number R (of the order of 1000 or more).
Step 4: Estimate the two constants of BCA bootstrap method, Z, and @ for each unknown

parameter. Then estimate the lower and upper limits 6%, £(@) and (%) &(@2)
respectively.

The same method can be applied to derive confidence intervals for return level x;.
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Chapter 4

Chapter 4 Metocean climate modelling and analysis with
applications in ocean energy assessment

4.1 General

Analysis and accurate description of metocean variables and their corresponding climatology
is fundamental for many research purposes while it is involved in a variety of applied
disciplines. Some of the most common cases include the assessment of marine energy resource,
e.g. offshore wind (see, for example, Koletsis et al. (2016)) and wave (Cuttler et al., 2020), air
and water pollution dispersion (Ramsak et al., 2013), weather routing along long-distance
maritime routes (Perera and Soares, 2017), port infrastructure design and operation of offshore,
nearshore and coastal structures (Sierra et al., 2017), coastal morphodynamics (Casas-Prat et
al., 2016) and coastal zone management policies (Serafim et al., 2019) and marine ecosystems
(Calvo et al., 2011). For such assessment studies, long-term data sets are required. The
information contained in long-term metocean time series is important for assessing their
variability, identifying potential correlations between two (or more) climatic variables,
estimating extremes and design values, etc. Furthermore, the study of one metocean variable
can shed light on the behaviour of other ones; for instance, atmospheric climate changes are
likely to be reflected in the ocean surface physical characteristics (wind-driven circulation,
Ekman transport) and the regional climate signal (e.g. water cycle, drought events, temporal
variability) as well (Huang and McElroy, 2015).

As already mentioned, apart from the linear metocean characteristics, the corresponding
directional features are also characterized by their inherent variability and their association
structure with linear variables, thus they play an important role in many engineering and
metocean studies. For example, in the context of ocean energy assessment studies which is the
central core of applications presented in this chapter, directional parameters are involved,
among others, in the micro-siting of offshore wind and wave farms (Song et al., 2016;
Moarefdoost et al., 2017), the developing technology of floating wind turbines (Bachynski et
al., 2014), the performance of wave energy converters for an accurate assessment of wave
energy (Carballo et al., 2014) and fatigue analysis of offshore structures (Horn et al., 2018).
Hence, the importance of analysing and modelling directional variables is evident, although the
corresponding literature is either rather poor yet or often confined to the provision of standard
rose plots.

This chapter consists of case studies coming from the fields of long-term climate modelling of
metocean variables and marine renewable energy, and deals with real-world wind and wave
data sets as described in Appendix E. Each section discourses topics related to the theoretical
background of probabilistic modelling elaborated in Part I. Specifically, Section 4.2 presents
an integrated approach for climate analysis and variability of wind speed and direction, Section
4.3 deals with the application of regression and calibration models for wind speed (under the
presence of outliers) and wind direction data coming from different sources. Section 4.4
evaluates different bivariate models for the joint description of wind speed and direction and
provides suggestions for the use of parametric and non-parametric models. Finally, Section 4.5
applies the directional extreme value analysis, a modification in the estimation of parameters
of a directional extreme value model based on a penalised likelihood criterion is proposed and
a thorough investigation of various methods of threshold selection and declustering is provided.
At the time of presenting this thesis, the results presented in Sections 4.2, 4.3.2 and part of 4.4
have been published in three scientific journals, results from Section 4.3.3 have been published
in the proceedings of a well-established international conference (International Ocean and Polar
Engineering Conference) and from Section 4.5 have been submitted for publication.
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4.2 Wind climate analysis and variability

4.2.1 Synopsis

In this section, the long-term offshore wind characteristics of the Mediterranean Sea are
assessed based on a 36-year reanalyses data obtained by the ERA-Interim database. In order to
identify the systematic wind flow patterns and reveal the general features of the wind
climatology patterns, the wind climate analysis consists of the study of: i) the spatio-temporal
behaviour (including variability characteristics) of wind speed and direction for the annual time
scale; ii) the joint association of wind speed and direction for the annual time scale, and; the
wind speed trends and wind direction changes. In the context of a climate assessment study, the
analysis of wind direction changes are presented here for the first time.

The results of this analysis, along with other outcomes and discussion considering the monthly
scale, have been published in:

Soukissian, T., Karathanasi, F., Axaopoulos, P., Voukouvalas, E.G., Kotroni, V., 2018.
Offshore wind climate analysis and variability in the Mediterranean Sea. International
Journal of Climatology 38: 384-402.

4.2.2 Short description of the study area description

The Mediterranean Sea, shown in Figure 4-1, is a semi-enclosed basin characterized by various
geomorphological and topographical features with complex coastlines and local orography that
influence the wind climatology both spatially and temporally. Some typical regional wind
features occurring in the Mediterranean Sea are the following: Mistral, Tramontane, Bora,
Sirocco, Etesian, Levante, Poniente, Leveche, etc. For a detailed description of the main
Mediterranean winds, see Zecchetto and Cappa (2001) and references therein.

Apart from the aforementioned regional and local climatic features, the interaction of the
airflow with the complex coastal orography, and the Mediterranean basin itself, plays also a
significant role in the definition of the weather patterns, including the precipitating systems, the
development of cyclones, etc. The Mediterranean Sea is one of the most cyclogenetic areas in
the world (Flaounas et al., 2015), where explosive cyclogenesis (Lagouvardos et al., 2007) and
tropical-like cyclones also occur (Tous and Romero, 2013).

Gulfof Li
- Lion Y‘”ﬂ" e
Balearic Sea

Tyrrhenian Sea

Aegean Sea'
Ionian Sea b |

S Levantine Basin

 Libya A

Figure 4-1. The Mediterranean Sea divided into 11 sub-basins that are mentioned throughout
the subsequent analysis (the background of the map has been derived from Google Earth).

74



Chapter 4

4.2.3 Wind speed and wind direction climate

The notation of the following sections is introduced in Appendix B. The realizations of the
linear variable X correspond to wind speed, denoted by u;, and the corresponding realizations
of the directional variable (i.e. wind direction) are denoted by 6;. All the results refer to the
annual time scale. The analysed data come from the ERA-Interim dataset with horizontal spatial
resolution of approximately 80 km covering the period 1979-2014; for more details, see
Appendix E.3.

The spatial distribution of the mean annual wind speed and wind direction are presented in
Figure 4-2. The windiest areas of the Mediterranean Sea are the Gulf of Lion, the area
surrounding the longitudinal axis of the Aegean Sea, the S Levantine Basin, the belt extending
from the E Algerian Basin up to the Gulf of Gabes as well as the Alboran Sea. The overall
highest mean annual wind speed is observed for the offshore area of the Gulf of Lion (7.4 m/s
with corresponding mean wind direction 320.9°) and the second highest is observed for the
central Aegean Sea (7.2 m/s with corresponding mean wind direction 4.0°). Regarding the wind
directional patterns, they are fairly comparable with the results provided by Zecchetto and De
Biasio (2007) for the period 2000-2004. Specifically, the analysis revealed many typical
regional scale wind patterns such as the easterly Levanter wind in the Alboran Sea and the
northeasterly (cold) Bora in the Adriatic Sea. The identification and quantification of these
patterns contributes to the identification of ocean circulation patterns in the corresponding
areas.

4.2.4 Association between wind speed and wind direction

In Figure 4-3, the spatial distribution of the linear—circular correlation coefficient r2, (see
Appendix A.3 for the mathematical definition) between annual mean wind speed and annual
mean wind direction is depicted. The highest values of 7%, are observed across the eastern
coasts of N Levantine Basin, the Gulf of Lion, the SE Alboran Sea, the SE Algerian Basin, the
northern and eastern coasts of the Adriatic Sea, the W Balearic and S Tyrrhenian Seas, the
southern part of the S Levantine Basin as well as the Aegean Sea, reaching values between 0.34
and 0.37. The analysis at the monthly temporal scale showed that there is a strong linear
association between wind speed and direction in the Aegean Sea and the Gulf of Lion, mainly
for June, July, August and September. For the Aegean Sea, this behaviour can be attributed to
the prevalence of the Etesians that blow persistently and intensively mainly during these
months.

ERA-Interim, 1979-2014: Mean a I wind speed and direction, 10m

Latitude (°)

Longitude (°)

Figure 4-2. Spatial distribution of mean annual wind speed and wind direction over the
Mediterranean Sea.
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ERA-Interim, 1979-2014: Mean annual correlation coefficient of wind speed and direction, 10m

0.9

Latitude (°)

Longitude (°)

Figure 4-3. Spatial distribution of linear—circular correlation between wind speed and
direction over the Mediterranean Sea on an annual basis.

4.2.5 Wind speed trend

The assessment of annual mean values for the estimation of linear slope for a seasonal series is
supported by Withers and Nadarajah (2015). The authors suggest the use of annual mean values
if data with duration equal to or longer than 5 years are available. The linear trend provides a
quantification of the tendency of the mean intensity of wind fields in the examined time horizon.
The parameter of main interest that quantifies the linear trend rate is the slope, i.e. the rate of
wind speed change per unit time. In this analysis, the Theil-Sen linear estimation is adopted for
the evaluation of the sought-for slope. This non-parametric estimator is less sensitive in
departures of data from normality and less affected by the presence of outliers in the examined
time series. In order to test the existence of a monotonic trend, the non-parametric Mann-
Kendall test was adopted; see also Appendix B.6. The obtained results describe whether the
statistical characteristics of wind speed tend to increase (positive values of the slope), decrease
(negative values of the slope) or remain almost constant (slope close to zero) in the examined
time scale.

In Figure 4-4, the spatial distribution of the linear slope of the annual mean wind speeds
my,y(),j = 1,2,..,], is depicted for the period 1979-2014. The dotted areas are characterized
by statistically significant trends according to the Mann-Kendall test. The largest positive slopes
are observed in the lonian Sea (0.0159 m/s/year), the N Tyrrhenian and N Adriatic Seas, the
eastern part of the Algerian Basin up to Balearic Isl. and the western part of the S Levantine
Basin (between Crete Isl. and Africa). The overall minimum negative slope is observed offshore
the coasts of Monaco in the Ligurian Sea (—0.023 m/s/year) while milder negative slopes appear
also in the central Aegean Sea (—0.014 m/s/year), the E Alboran Sea and the N Levantine Basin.
The long-term decrease of wind speed in the central Aegean Sea is in agreement with the results
found by Poupkou et al. (2011).

The results from the wind speed trend analysis are in qualitative agreement with the ones from
previous studies, although the spatial and temporal extent, and the source of the considered
datasets may vary. For instance, Aarnes et al. (2015) investigated, among others, trends of
global marine winds between 1979 and 2012 using also the ERA-Interim reanalysis dataset; the
results for the trends in the Mediterranean Sea, presented in Figure 5(f) of Aarnes et al. (2015)
are qualitatively in agreement with the ones presented in Figure 4-4.
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ERA-Interim, 1979-2014: Slope of annual mean wind speed
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Figure 4-4. Spatial distribution of annual mean wind speed linear slope (in m/s/year) over the
Mediterranean Sea. Dotted areas exhibit statistically significant trends.

4.2.6 Variability characteristics of wind speed and wind direction

The spatial distribution of mean annual variability is depicted in the upper panel of Figure 4-5.
The highest variability within each year is exhibited in the northern part of the Adriatic Sea
(68%), as well as the Ligurian, Tyrrhenian (especially offshore the northern coasts of Sicily),
N Aegean and W Balearic Seas, and the Gulf of Antalya. According to Zecchetto and De Biasio
(2007), the large wind speed variability in the Mediterranean Sea occurs in places swept by
winds from the neighbouring land, like in the Adriatic Sea where Bora orographic downslope
winds blow from Croatia, Slovenia and Montenegro, in the Ligurian Sea where winds blow
from the coasts of France and Italy, over the N Aegean Sea and in the Gulf of Antalya. The
spatial patterns depicted in this figure are in agreement with the patterns shown in Figure 3 of
Zecchetto and De Biasio (2007).

In the lower panel Figure 4-5, the spatial distribution of inter-annual variability is shown. The
strongest inter-annual signal appears in the W Ligurian Sea reaching values of the order of
7.25%. Other areas of relatively high inter-annual variability are the N Adriatic, Tyrrhenian and
Balearic Seas, the Gulf of Lion, the S Algerian Basin and the lonian and central Aegean Seas.

The angular variance of annual mean wind direction is depicted in Figure 4-6. In a large extent,
the Mediterranean Sea is characterized by rather low values of angular variance fluctuating
between 0.0 and 0.2. However, there are some areas that exhibit relatively high values (well
above 0.4), namely the western part of the Alboran and Balearic Seas, the S Algerian Basin, the
N Ligurian Sea and NW and S Adriatic Sea. The overall highest value of angular variance
(0.975) is observed in the western part of Majorca Isl., and in the Ligurian Sea, eastern of
Monaco (0.9) suggesting a highly fluctuating wind direction. Notice that for the area offshore
the Gulf of Genoa, high variability of both wind speed and direction is observed.
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ERA-Interim, 1979-2014: Mean annual variability of wind speed

9°E 18°E 27°E

Figure 4-5. Spatial distribution of mean annual variability (upper panel) and inter-annual
variability (lower panel) of wind speed over the Mediterranean Sea.

4.2.7 'Wind speed and direction changes
In this subsection, the mean values of year-to-year angular distance of wind direction are

provided. In order to quantify the wind direction changes, the year-to-year angular distance
A8y _; is introduced, which is defined as:

ERA-Interim, 1979-2014: Angular varianee of annnal mcan wind direction

Figure 4-6. Spatial distribution of angular variance of annual mean wind direction over the
Mediterranean Sea.
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|A9Y:j| = min(|5Y:j+1 - 5Y2j|mod27r, 21 — |§Y:j+1 — 5y2j|mod2n), (4.2)

and bounded in [—m, ], with

ABy_; =0, ifOy_; < Oy_jp1 <Oy_j+m
AHY=]‘ < 0, lf§Y=] - < §Y=j+1 < §Y=]. or 5}/=1‘+1 > §Y=j + T (42)
AQY:]' = (§Y=j+1 - EY:j)modZT[, lfAey:] =T,

forj=12,..,] —1, where 5Y:j and 5Y:j+1 denote the mean wind direction for years j and
j + 1, respectively. z modw denotes the remainder when z is divided by w. Farrugia et al.
(2009) provided a simpler expression for the estimation of A@y_;, given by

Aby_j =2 tan‘l{tan[0.5(§y=j+1 - §y=j)]}' (4.3)

Eq. (4.3) provides a signed value of A6y_;, for a particular year j, indicating the direction of
rotation, i.e. clockwise (positive sign) or anticlockwise (negative sign). In the same way,
angular distances for other temporal scales can be defined. Afy_; is a random variable
following a particular stochastic structure that, in the spatial domain, can be described through
the corresponding mean value A8y

In Figure 4-7, the spatial distribution of the mean year-to-year angular distance A8y is
presented, where clockwise (anticlockwise) rotation indicates areas with positive (negative)

angular distance. In general, in most areas of the Mediterranean Sea, A8y takes low absolute
values. Areas of Balearic, Ligurian, Tyrrhenian and Alboran Seas exhibit the most evident

extreme values of ABy. The overall extreme values (i.e. —37° and 99.7°) are encountered in the
Ligurian/Tyrrhenian and Tyrrhenian Seas, respectively. In the Balearic Sea the corresponding
values are —35.8° and 16.8°, respectively, while in the Alboran and Adriatic Seas the extreme

values of ABy are —8.7° and —9°, respectively.

A comparison of the patterns from Figure 4-7 and Figure 4-6 reveals many similarities between
them; areas characterized by high values of angular variance are also characterized by high
values of angular distance. Comparing the results of Figure 4-4 and Figure 4-7, it is observed
that some of the areas mentioned above exhibit simultaneously significant slopes of wind speed
and year-to-year angular distances, namely the Ligurian and Tyrrhenian Seas. For instance, at
the area around 43.25°N, 8.5°E, wind speed exhibits a long-term rate of change close to —0.016
m/s/year, while the corresponding year-to-year angular distance of wind direction is of the order
of —33°.

ERA-Intcrim, 1979-2014: Mcan ycar-to-year angular distance

Figure 4-7. Spatial distribution of signed mean year-to-year angular distance over the
Mediterranean Sea.
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Another type of results presented here refers to the segmentation of the available time in time
segments of 10 years, and the estimation of the relative change between the first and the last
decade. Specifically, for wind speed the following quantity is estimated

m —m
i _ "tuYy uYy
om; =——F——"7—, (4.4)
My,

where m,, y, denotes the mean annual value of wind speed obtained for 19791988, and m,, v,
denotes the corresponding value for 2005-2014 in the results presented in this subsection.

Regarding wind direction, the angular difference between the mean annual values for the first
and last decade of the time series is also provided. The angular difference is defined as follows:

86" = min[|mgy, —may,|,360 — |mgy, —may,|], (4.5)

where || denotes the absolute value operator, my y, denotes the mean annual wind direction for
the period 1979-1988, and mg y,, the corresponding value for the period 2005-2014. Eq. (4.7)
provides the absolute difference between the mean annual wind directions corresponding to the
examined decades, while 56" is bounded within [0,180]. 56" is a gross characteristic of the
wind direction change between long-term time periods. Such information is valuable in the
offshore wind energy industry and relevant fields of activity, while it could be also used as a
potential indication of more significant environmental changes.

The spatial distribution of sm%'" is depicted in Figure 4-8. In order to secure the statistical
validity of the results, the non-parametric Mann-Whitney U test has been applied. The null
hypothesis that is tested is whether the examined samples (i.e. the mean annual values of wind
speed from the first and the last decade) come from the same population. The use of the Mann-
Whitney U test against the standard t-test is justified by the fact that the former test can be
applied on unknown distributions in contrast to the latter test that can be applied only to samples
from normal populations. In this figure, only the locations with critical p-values less than 0.05
are presented. For these areas, the p-values suggest the rejection of the assumption that the two
samples come from the same population or have the same means. Therefrom, it can be
concluded that, for the particular areas, the estimated relative wind speed changes are
statistically significant. These areas are the N Adriatic Sea (Gulf of Venice, where the relevant
increase of wind speed reaches values up to 10.2%), the S lonian Sea (the relevant increase of
wind speed reaches values up to 7.1%), the area offshore the Gulf of Genoa (the relevant
decrease of wind speed reaches values up to —13.5%, which, in absolute terms, is the greatest
change observed in the entire Mediterranean), the central Aegean Sea, particular areas in the N
and E Tyrrhenian Sea, as well as some spots at the western and eastern part of the S Levantine
Basin, part of the E Algerian Basin and the southern part of the central Mediterranean Sea, and
the area between the northern coasts of Cyprus and the coasts of Turkey.

As already mentioned, studies on the long-term change of the wind flow over the whole
Mediterranean are not available. The results presented here are in agreement with the results
found specifically over the Aegean by Poupkou et al. (2011). Indeed the authors performed a
trend analysis of the Etesian winds over the Aegean based on 31-year reanalyses data and they
also found a negative trend in the frequency and wind speed of the Etesians.

In Figure 4-9, the spatial distribution of §6"!! is presented. Again, in order to secure the
statistical validity of the results, the areas depicted in this figure are those with critical
p —values of the Mardia-Watson-Wheeler test (see Appendix B) less than 0.05. The null
hypothesis that is tested is whether the examined samples (i.e. the mean annual values of wind
direction from the first and the last decade) have identical circular distributions regarding mean
direction, circular variance or both. For these areas, the p —values suggest the rejection of the
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assumption that the two samples come from the same population or have the same means.
Therefore, it can be concluded that, for the areas depicted in Figure 4-9, the estimated angular
differences are statistically significant.

ERA-Interim, 1979-2014: Relative change of mean annual wind speed between 1979-1988 and 2005-2014

Latitude (*)

Longitude (")

Figure 4-8. Spatial distribution of the relative change of mean annual wind speed between
the first (1979-1988) and the last (2005-2014) decade of the available time series over the
Mediterranean Sea. White colour denotes the areas where this relative change is not
statistically significant based on Mann-Whitney U test.

According to Figure 4-9, the statistically most significant decadal angular differences occur in
the northwestern part of the Adriatic Sea (angular differences up to 168°), the W Balearic Sea
(angular differences up to 148°), and across the longitudinal axis of the W Adriatic Sea (around
70°). Milder differences (of the order of 10° to 30°) are observed for the extended area between
the eastern part of the central Mediterranean Sea and western part of S Levantine Basin, NE
Aegean Sea, N and NE of the S Levantine Basin, specific areas around S Italy, W Algerian
Basin, and some spots north of Corsica (Ligurian Sea) and south of Sardinia (Tyrrhenian Sea).
Let us note that although the magnitude of the relative change of mean annual wind direction
for the examined decades is of primary concern, it seems that there is a systematic wind
direction shift from NE to S in the Balearic Sea, while the corresponding shift in the Adriatic
Sea is not unidirectional. Furthermore, an analysis between the first (1979-1988) and the right
next decade (1989-1998), that is not presented here, reveals two localized areas that are not
present during the examined decades: W Alboran Sea, with relative changes up to 80°, and SE
N Levantine Basin, with relative changes up to 15°.

ERA-Interim, 1979-2014: Relative change of mean annual wind direction between 1979-1988 and 2005-2014

atitude (°)

Figure 4-9. Spatial distribution of the angular change of mean annual wind direction
between the first (1979-1988) and the last (2005-2014) decade of the available time series
over the Mediterranean Sea. White colour denotes the areas where this relative change is
not statistically significant based on Mardia-Watson-Wheeler test.
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Overlapping the results of Figure 4-8 and Figure 4-9, it is observed that some particular areas
exhibit statistically significant decadal changes both in wind speed and direction, namely a
northern part of the Adriatic Sea, a southern part of the lonian Sea, western of the Sea of
Marmara, the western part of the S Levantine Basin (extending across the 33rd parallel North),
a region offshore the Gulf of Genoa (Ligurian Sea) and north of Cyprus Isl. Summing up, the
above results suggest that part of the observed wind variability in the specific areas could be
attributed to the long-term change of wind direction patterns and not only on wind speed
changes. This behaviour has also effects on wave propagation patterns and sea state intensities,
since it also alters the corresponding fetch lengths and probably fetch durations. However, it
would be risky to provide an explanation for the particular behaviour of wind direction in these
areas due to the complex interactions and nature of the climatic system. Potential global
warming effects could be one reason, since random fluctuations of wind direction, except for
wind speed, may be caused for small-scale regions over short-term time scales.

4.2.8 Final comments

This study provides an overview of the linear and directional wind climate for the
Mediterranean Sea, providing also some additional statistical characteristics such as wind
variabilities, angular distances, and inter-decadal directional changes extending over the entire
spatial scale of the examined basin, for the first time. Summarizing the major findings of this
work, the following general conclusions can be drawn:

» Regarding wind speed variability, the areas that exhibit high values of mean annual and
inter-annual variability are the N Adriatic, Tyrrhenian, Ligurian, Balearic, lonian and
Aegean Seas.

« Regarding wind direction variability, the W Mediterranean Sea (Ligurian, Tyrrhenian,
Balearic and Alboran Seas) is characterized by high values of variance unlike the rest
part of the basin.

o Interms of wind speed trend, positive values of slope throughout the examined period
are observed in the lonian, N Tyrrhenian and N Adriatic Seas, the eastern part of the
Algerian Basin and the offshore area between Crete Isl. and Africa; large negative
values are evident in the Ligurian and central Aegean Seas.

« Interms of angular distance, most areas of the Mediterranean Sea are characterized by
low absolute mean values except for the Balearic, Ligurian and Tyrrhenian Seas.

» Regarding inter-decadal changes of wind speed, the highest positive decadal difference
corresponds to the northern part of the Adriatic Sea (up to 10.2%) followed by the
southern part of the lonian Sea (up to 7.1%), while the highest negative decadal
difference corresponds to the area offshore the Gulf of Genoa (up to —13.5%).

« Regarding inter-decadal changes of wind direction, the most significant directional
differences are located in the northwestern part of the Adriatic Sea (up to 168°), the W
Balearic Sea (up to 148°), and across the longitudinal axis of the W Adriatic Sea
(around 70°).

e There is a simultaneous long-term large change of both mean annual wind speed and
direction during the examined decades in a northern part of the Adriatic Sea, a southern
part of the lonian Sea, western of the Sea of Marmara, the western part of the S
Levantine Basin (extending across the 33rd parallel North), a region offshore the Gulf
of Genoa (Ligurian Sea) and north of Cyprus Isl.

Since wind speed trends and angular distances are evident, it is rational to assume that the
underlying variations may be attributed to the distribution of high wind speeds through the
changes in the occurrence of high impact weather related with wind storms, that is difficult to
quantify; however, the reason behind these changes cannot be determined accurately in the
context of this analysis nor the involved physical processes. On the other hand, large angular

82



Chapter 4

distances for wind direction are expected to affect wave propagation schemes and the
interdependent environmental phenomena. Finally, a longer-term data set could highlight
whether the estimated variabilities and trends have a steady behaviour or constitute a part of a
larger cyclic variation, as well as it could serve for a more robust analysis as regards the decadal
changes of both wind speed and direction. Moreover, the results of this section clearly suggest
that in any attempt for wind and wave climate analysis, directional characteristics should
necessarily be taken into consideration.

4.3 Calibration of metocean characteristics

4.3.1 Synopsis

Buoy measurements are usually considered as a reference source in applications related to
metocean climate analysis and site selection for ocean energy development including evaluation
and calibration of metocean data obtained from less reliable sources, combined assessment,
blending and homogenization of multisource metocean data, etc. Regarding linear variables,
most of these applications are based on regression techniques elaborated by using the principle
of ordinary least squares (OLS). However, long-term metocean data usually contain several
outliers, which may question the validity of the regression analysis, if not properly considered.
In this section, robust regression methods are implemented to identify and reveal outliers from
wind data, and retain at the same time their efficiency. Long-term reference wind data series
obtained from buoys at four locations in the Mediterranean Sea are used to calibrate hindcast
(model) wind data by applying robust methods and OLS. The obtained results are compared
according to several statistical measures. The effects of the calibration methods are also
assessed with respect to the available wind power potential. The results clearly suggest that
particular robust methods perform in all respects better than OLS.

On the other hand, calibration techniques are very rarely adopted for circular variables, although
their accurate prediction seem to be significant in various applications. For instance, wind
direction is a critical variable as regards the micro-siting procedure of offshore wind turbines
within an offshore wind farm, since wake effects can affect the efficiency of the optimal
aligning of turbines to wind direction (Castellani et al., 2015). Moreover, wave direction is also
critical as regards the wave resource evaluation in an area when a wave energy converter is to
be installed (Hiles et al., 2016). In this respect, wind (wave) direction not only should never be
neglected in relevant applications but it should be determined as accurately as possible. In
reality, the relevant scientific literature as regards calibration of wind and wave direction from
various data sources implemented through linear regression analysis is rather poor. In this
context, calibration techniques are presented for correcting wind direction at various locations
in the Mediterranean Sea. The application data are measurements from in situ devices and
results from NWP models and remote sensing instruments, which are corrected since they are
considered to be less accurate. The obtained results suggest that the proposed statistical
procedure should be applied along with the calibration of wind speed, whenever accurate data
are required in wind energy assessments.

The results of the calibration of linear variables based on robust regression methods, along with
outcomes from additional buoy locations, have been published in:

Soukissian, T.H., Karathanasi, F.E., 2016. On the use of robust regression methods in wind
speed assessment. Renewable Energy 99: 1287-1298.

A similar study can also be found in:

Soukissian, T., Karathanasi, F. Voukouvalas, E., 2014. Effect of outliers in wind speed
assessment. Proceedings of the 24th International Offshore (Ocean) and Polar Engineering
Conference, 1: 362-369, Busan, June 15-20.
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Part of the results of the calibration of directional variables, have been published in:
Karathanasi, F.E., Soukissian, T.H., Axaopoulos, P.G., 2016. Calibration of wind directions
in the Mediterranean Sea. Proceedings of the 26™ International Ocean and Polar Engineering
Conference, 1: 491-497, Rhodes, Greece, June 26-July 1.

4.3.2 Calibration of linear data using robust regression methods

The main aim of the proposed methodology is to calibrate concurrent wind speed data from the
less accurate source (NWP model results) using buoy data (which is the reference data source),
through the implementation of a linear calibration procedure. Furthermore, the performance of
the examined regression (calibration) methods is also assessed. Along with the OLS method,
the robust methods that have been applied and examined in this analysis are the MM —
estimation (MM), Huber’s M—estimation (M—H), least trimmed squares (LTS) and L; — estimate

(La).

Henceforth, let u,, denote the wind speeds obtained from the NWP model and uz denote the
wind speeds obtained from buoy measurements. #,, denotes the corrected (calibrated) wind
speed from the NWP model. Although the regression parameters are firstly estimated by the
abovementioned methods, hereinafter, calibration parameters and procedures are only
addressed, implying that the corresponding regression parameters have been firstly estimated.

Based on the classical calibration model, let b’ o and b'; denote the estimates of intercept and
slope, respectively, of the calibration parameters.

Two different data sets are elaborated throughout the analysis: the first data set (called
estimation set) is the one from which the calibration parameters are estimated, and the second
data set (called evaluation set), is the one on which the calibration is applied and the evaluation
of the methods is performed. See also Figure 4-10, for a schematic representation of the applied
methodology. Specifically, the estimation dataset consists in collocated data from buoy
measurements (black solid line) and NWP model results (black dashed line). From this data set,
the parameters 5’0 and b’; for the calibration of the NWP model results are estimated. These
parameters are used for acquiring the calibrated NWP model results (red solid line) of the
evaluation data set and then the calibrated NWP model data are compared with the buoy data
of the evaluation set.

The following special cases are examined in detail:

C.1 Full data sample analysis: This is the most fundamental case, where the estimation and the
evaluation data sets are the same and refer to the entire available time period. Specifically,
OLS and robust methods are applied using the full concurrent available wind data sets in
order to calibrate (correct) wind speed data from the less accurate source. The evaluation
of the performance of OLS and robust methods is made using the same data set.

C.2 Partial data sample analysis: The estimation and the evaluation data sets are different and
non-overlapping, i.e. the estimation of the calibration parameters is made using part of the
available data sample and the calibration and evaluation of the methods is made based on
the remaining part of the available data sample. Specifically, the estimation data set refers
to wind data corresponding to the first year of the available time period and the evaluation
data set refers to data corresponding to the remaining time period. It is evident that the
unused wind data sample is considered to contain new (“fresh”) wind data, rendering this
sample more realistic and the methodology tighter for the assessment of the calibration
relations. This concept is closely related to the measure—correlate—predict (MCP) family
of methods used in wind speed forecasting to extrapolate and extend in time short-term
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wind time series; see, for example, Lackner et al. (2008) and a review from Carta et al.
(2013).

' Estimation data set * Evaluation data set
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Figure 4-10. Schematic representation of the applied methodology corresponding to case C.2.

Two additional cases have also been examined in the work of Soukissian et al. (2014). In the
first one, the calibration parameters were estimated from a time period in the middle of the
recording period of the obtained datasets in order to correct and evaluate the less accurate data
source from the time periods before and after the estimation set. In the second one, outliers were
omitted from the full data sample based on the severity of change they cause on the regression
parameters b, and b, in order to obtain a ‘clean’ dataset for OLS estimation; then, the OLS
calibration parameters were re-estimated for the entire available time period, the data of the
same period were re-corrected and the method was re-evaluated.

Overall, the general proposed methodology consists of the following steps:

S.1 Estimation of the calibration parameters b’ o and b, by using OLS and robust techniques
from the collocated data samples referring to the estimation sets of C.1 and C.2 (the
general recommendation is to use concurrent data of, at least, one year length due to
seasonal wind variations).

S.2 Based on the parameters obtained from step S.1, correction of the wind speeds of the less
accurate data source (NWP model data) referring to the evaluation sets of C.1 and C.2.

S.3 Comparison between the calibrated NWP model wind speeds (from step S.2) and the
measured wind speeds obtained from buoys for the evaluation sets of C.1 and C.2.

In order to evaluate the performance of the examined regression/calibration methods, the
calibrated NWP model wind speeds from robust methods and OLS are compared to the
corresponding measured wind speeds obtained from the buoys through the following statistical
measures: BIAS, RMSE, MAE and SI; for the definitions, see Appendix B.4.

85



Calibration of metocean characteristics

Data and numerical results

Wind measurements from two buoys deployed in the Aegean Sea and two buoys in the Spanish
waters are used as reference data source. Their geographic coordinates along with the examined
measurement periods are presented in Table 4-1.

Before the regression/calibration analysis, the buoy wind data were first checked qualitatively
and any missing or clearly erroneous values (such as spikes) were discarded. Then, for
comparison purposes, wind speeds were adjusted to the reference level of 10 m above sea level
using the log-law wind profile. After this adjustment, the collocation in space and time
procedure was carried out. For the spatial collocation, the four nearest wind data series of the
NWP model were downscaled to the exact location of each buoy by applying the weighting
interpolation scheme. Regarding the temporal collocation, the common time frame was 3 h
(00:00, 03:00, 06:00, etc. UTC).

In Table 4-2, the results of a primary statistical analysis regarding the concurrent wind datasets
(buoy measurements and NWP model results) are presented for the examined locations. The
statistical parameters depicted in this table are the following: sample size N, mean value m,
standard deviation s, minimum value min, maximum value max, coefficient of variation CV
and coefficient of determination 72 between buoy measurements and NWP model results. It
should be noted that, despite the collocation procedure, the sample size remains adequate for
performing a statistically reliable analysis.

Estimation of regression/calibration parameters

The regression lines obtained from all examined methods (OLS method, MM-estimation,
Huber's M-estimation, LTS and L1-estimation) for the entire samples (i.e. case C.1) along with
the corresponding density scatter plot are shown in Figure 4-11. The colour gradation indicates
the density (percentage) of the data points falling within each square, where the red and blue
tone denotes the maximum and minimum frequency of appearance, respectively. In general, the
OLS line appears to be relatively further off the diagonal compared to the lines obtained from
robust methods. In addition, the slope of the regression line b, is systematically lower for OLS
compared to robust methods in all examined cases indicating the lower variance of the predicted
values of model data. It is also easily observed that robust methods provided values of slope
and intercept mutually close, compared to the values provided by OLS.

Table 4-1. Names, geographical coordinates and concurrent measurement time periods for
the examined buoys.

Buoy name Location (lat, lon) Recording period
Lesvos 39°10'N, 25°49'E 1/2000-12/2004
Mykonos 37°31'N, 25°28'E 1/2000-12/2004
Cabo Begur 41°55'N, 3°39'E 3/2001-12/2004
Cabo de Gata 36°43'N, —2°19'E 1/2000—10/2004
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Table 4-2. Basic statistics of wind speed for all the examined sites in the Mediterranean
Sea for the concurrent recording periods.

Location Data N m s min max cv r
source (m/s) (m/s) (m/s) (m/s) (%)
Lesvos Buoy 7.14 4.07 0.12 34.42 57.07
Model 11453 5.75 3.05 0.10 22.92 53.11 0.59
Mykonos  Buoy 8.14 4.18 0.12 21.48 51.33
Model 8606 6.62 3.21 0.16 17.97 48.46 0.71
Cabo Buoy 8.22 5.85 0.23 27.72 71.17
Begur Model 2251 6.70 3.97 0.18 22.50 59.20 0.74
Cabo de  Buoy 8870 6.20 3.83 0.23 20.99 61.76 0.70
Gata Model 5.40 3.38 0.10 18.38 62.50 '
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Figure 4-11. Scatter plot (with colour-scale indicating density) and regression lines of wind

speeds obtained for case C.1 for all the applied methods at: (a) Lesvos, (b) Mykonos, (c)
Cabo Begur and (d) Cabo de Gata.

The corresponding calibration parameters b’, and b’y for the NWP model wind data are
estimated. The values of these estimated parameters, for each method and both cases, are
presented in Table 4-3. From this table the following conclusions can be drawn:
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Parameter 17’0 is always negative and parameter 5’1 is always positive for all methods,
locations and cases examined. This behaviour is due to the fact that the NWP model tends
to underestimate wind speed measured from buoys, as was mentioned in Section 0;

ii. the estimated parameters from the pairs of MM and M-H methods, and LTS and L;

methods are fairly close to each other in the majority of the locations and cases examined;

iii. the values of parameters b, and b’; of the OLS method are consistently lower and

higher, respectively, compared to the corresponding parameters of the robust methods.
Exception of this behaviour is b, in Cabo Begur for case C.1;

iv. in general, LTS and L; methods provide the smallest values b’; parameter for the

majority of the examined locations.

Evaluation of calibration methods

The evaluation of the performance of the examined calibration methods is made by estimating
the statistical measures mentioned before. In case C.1, the estimation of the calibration
parameters is made by utilizing the entire concurrent data samples of buoy measurements and
NWP model results. In Table 4-4, the obtained values of the applied statistics are presented at
the examined locations for OLS and those of the examined regression/calibration methods that
provided at least one minimum value of any of the statistics used. The optimum value of the
statistics for each examined case is shown in boldface letters. The most important conclusions
that can be drawn from the obtained results are the following:

MAE and RMSE (along with SlI), which are statistic measures quantifying the absolute
and squared difference between corrected and measured wind speeds, respectively, were
systematically lower for LTS and L1 methods for all examined locations.

From the overall combination of four locations with four statistical criteria (i.e. in total
16 outcomes), LTS performed better for 12 out of the 16 outcomes and Li-estimator for
5 outcomes (in Sl results of Gabo de Gata both methods performed equally best).

Table 4-3. Estimated calibration parameters obtained from each applied method for cases

C.1 and C.2 for all examined locations.

Location Method b, b,
C.l C.2 C.l C.2
Lesvos OLS —2.865 —2.087 1.740 1.657
MM -2.059 -1.771 1.622 1.604
M-H —2.241 —1.804 1.649 1.610
LTS —-1.806 —1.634 1.587 1.581
L1 —1.849 —1.551 1.589 1.559
Mykonos OLS -2.113 —2.753 1.548 1.666
MM —1.867 —2.497 1511 1.627
M-H -1.900 —2.539 1517 1.635
LTS -1.750 —2.349 1.494 1.608
L1 —1.888 —2.473 1.516 1.631
Cabo Begur oLS -3.285 -3.338 1.715 1.776
MM -3.273 -3.217 1.703 1.731
M-H -3.279 —3.262 1.705 1.743
LTS -3.300 -3.177 1.697 1.712
L1 -3.231 —3.289 1.701 1.743
Cabo de Gata OLS -1.104 -0.971 1.353 1.307
MM —-0.837 —0.738 1.304 1.265
M-H -0.883 -0.774 1.313 1.272
LTS —-0.700 —0.646 1.280 1.248
L1 —0.676 —0.579 1.278 1.242
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Table 4-4. Statistics of calibration equations based on OLS, MM, M-H, LTS and L, for all
the examined locations for case C.1.

Location Method BIAS RMSE MAE Sl
Lesvos OLS 0.347 3.317 2.501 0.441
LTS 0.338 3.107 2.323 0.424
L1 0.315 3.108 2.325 0.423
Mykonos OLS 0.078 2.664 2.064 0.322
LTS 0.062 2.583 2.000 0.313
Cabo Begur OLS 0.292 3.389 2.576 0.394
LTS 0.150 3.350 2.545 0.389
Cabo de Gata OLS 0.135 2.455 1.872 0.383
LTS 0.071 2.347 1.783 0.373
L1 0.082 2.345 1.781 0.373

In case C.2, the estimation of the calibration parameters was made by utilizing only the first
year data from the concurrent data samples of buoy measurements and NWP model results.
After applying the calibration, the evaluation of the obtained results was made on the remaining
time period data. In Table 4-5, the obtained values of the applied statistics are presented at the
examined locations for OLS and those of the examined regression/calibration methods that
provided at least one minimum value of any of the statistics used. Again, the optimum value of
the statistics for each examined case is shown in boldface letters. The most important
conclusions that can be drawn from the obtained results are the following:

o The best values for RMSE, MAE and Sl are obtained from LTS and L-estimator robust
methods for all the examined locations.

o Each of LTS and L-estimator methods performed better 9 and 6 times, respectively,
while 1 time LTS and MM-estimator performed equally best. In total, together LTS and
Li-estimator performed better in 15 out of 16 total outcomes. Furthermore, OLS
performed well only 1 time.

Evaluation of calibration methods on wind energy estimation

In this section, the effects that the different regression (calibration) methods have on the
estimation of the mean wind power density P are assessed at the examined locations in the
Greek and Spanish waters. The mean (long-term) wind power density P in a specific sea area
can be directly obtained, if a sufficiently long time series of observed wind speeds is available,
through the following relation:

Table 4-5. Statistics of calibration equations based on OLS, MM, M-H, LTS and L, for all
the examined locations for case C.2.

Location Method BIAS RMSE MAE SI
Lesvos OLS 0.587 3.305 2.451 0.449
L1 0.475 3.146 2.320 0.433
Mykonos oLS 0.347 2.865 2.226 0.350
LTS 0.325 2.758 2.141 0.339
Cabo Begur oLS 0.812 3.542 2.715 0.441
LTS 0.529 3.363 2.577 0.419
Cabo de Gata OLS -0.061 2.358 1.786 0.379
LTS —0.099 2.283 1.726 0.372
L1 —0.083 2.279 1.723 0.373
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N
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b= ﬁzpu?, (4.6)
=

where N is the sample size and u;, i = 1, ..., N, is the observed wind speed time series. P can
be directly estimated by utilizing the wind speed time series up,, i = 1, ..., N, obtained from
buoys. This estimate is denoted by Py and is considered as the reference value. Moreover, P
can be also estimated by using the calibrated results of the NWP model, i.e. the wind speed

time series 4y, i = 1, ..., N; this estimate is denoted by }:)M. The quality of the calibration
procedure described in the foregoing sections can be additionally cross-examined by evaluating
the (absolute) relative error between Pg and P,,.

The obtained results for relative errors with respect to all locations and regression/ calibration
methods examined are shown in Table 4-6. The minimum values of this quantity for each
examined case and method is shown in boldface letters. It is clear from these results that LTS
and L;-estimation methods perform systematically better than OLS. It is also worth mentioning
that OLS method provides the largest relative error for all cases and locations. Let it be noted
that, for case C.1, the relative error obtained for the non-calibrated data is significantly reduced
by all calibration methods (results are not shown here). However, even after the application of
the calibration procedures, the relative error remains still relatively large. Moreover, the relative
error obtained for case C.2 is large and may be considered as unacceptable; this suggests that
one-year data may be inappropriate for forecasting purposes as regards the available offshore
wind power potential. All these issues reveal the need for an in-depth assessment of the less
reliable data sources in wind energy related applications. The same conclusion was obtained
(in a different context) in Soukissian and Papadopoulos (2015a). See also the interesting
discussion of Section 2.3 in Carta et al. (2013).

Table 4-6. Relative errors (%) of mean wind power density based on OLS, MM, M-H, LTS
and L; for all the examined locations for cases C.1 and C.2.

Location Method Case C.1 Case C.2
Lesvos oLS 38.37 40.74
L: 26.71 29.25
Mykonos oLS 21.87 45.39
LTS 17.50 39.98
Cabo Begur oLS 28.54 57.84
LTS 23.45 42.41
Cabo de Gata oLS 25.84 13.21
LTS 16.91 6.66

4.3.3 Calibration of directional data

Data and methodology used

Two Greek (Lesvos, Santorini) and two Spanish (Cabo Begur, Mahon) buoys are the reference
data sources and the gridded data from the ERA-Interim (ERAI) and the Blended Sea Winds
(BSW) datasets form the less accurate data sources (obtained from a NWP model and blending
data from different satellites, respectively), that are calibrated. The closest grid point (belonging
either to the model or the satellite product) to the coordinates of the examined buoy was chosen
for the regression (and calibration) analysis. The data were firstly collocated in time with 6-
hour common time frame (00:00, 06:00, 12:00, 18:00 UTC) for both combinations, i.e., buoy
measurements and ERAI data, and buoy measurements and BSW data. The concurrent time
series as regards the examined pairs buoy-ERAI and buoy-BSW are extending from 2004 to
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2006 for the former pair, and from 2007 to 2009 for the latter one, since they provided the
longest collocated triennial time span. The corresponding sample size along with the
geographical coordinates for each buoy are presented in Table 4-7. Moreover, it was assumed
that the change of wind direction due to the different reference heights is negligible.

Before proceeding with the application of the circular calibration on the available wind data, a
basic statistical analysis for the three aforementioned data sources is provided. Wind directions
are measured in degrees in the range (0°,360°] while the statistical and regression and
calibration analysis is based on angles that are transformed in radians in the interval (—m, n].
Units are displayed, whenever necessary, if the values of the examined statistics are not in
radians.

In Table 4-7, the main statistical parameters are summarized for each circular variable in the
examined locations. It is noticed that the mean directions obtained from the concurrent wind
data between buoy measurements and ERAI data are closer compared to the other pair of
concurrent data (buoy and BSW) apart from Cabo Begur, where the corresponding difference
is however rather low (~0.5°). The highest sample sizes are encountered in Santorini for both
examined pairs of datasets. Moreover, the lowest values for V, and s, are found in Santorini
and the highest values are depicted in Mahon. See also Figure 4-12 and Figure 4-13.

The prevailing wind directions obtained from the gridded wind data sources coincide in Lesvos
and Santorini (NNE and N, respectively); see Figure 4-12. Furthermore, wind directions
originating from the sector [45°,225°] are rather rare in the same locations. Regarding the
Spanish locations in Figure 4-13, wind direction from all the examined data sources is much
dispersed in Mahon; in Cabo Begur, the pattern of rose diagrams from the two examined pairs
of concurrent wind directional data is relatively similar to each other compared to the other
locations and the wind is almost unidirectional with prevailing direction coming from the NNW
for the three wind data sources.

Table 4-7. Summary descriptive statistics from the concurrent wind directions (Buoy-ERAI,
Buoy-BSW) for the Greek (Lesvos-LSV, Santorini-SNR) and Spanish (Cabo Begur-BGR,
Mahon-MHN) locations.

Location Data n ] R Vo Se
source ) () () ()
LSV Buoy 3332 20.918 0.395 0.605 1.363
¢: 39.15° ERAI 25.614 0.380 0.620 1.391
A: 25.81° Buoy 2972 21.365 0.390 0.610 1.372
BSW 13.529 0.359 0.641 1431
SNR Buoy 4038 314.760 0.484 0.516 1.205
¢: 36.25° ERAI 321.009 0.520 0.480 1.144
A: 25.49° Buoy 4028 314.855 0.484 0.516 1.205
BSW 322.938 0.478 0.522 1.215
BGR Buoy 3546 342.879 0.265 0.735 1.629
¢: 41.92° ERAI 333.366 0.308 0.692 1.535
A: 3.65° Buoy 3494 343.140 0.263 0.737 1.635
BSW 334.076 0.245 0.755 1.678
MHN Buoy 3744 351.556 0.115 0.885 2.081
¢: 39.72° ERAI 338.226 0.234 0.766 1.705
A: 4.44° Buoy 3694 353.139 0.113 0.887 2.089
BSW 331.439 0.173 0.827 1.874

91



Calibration of metocean characteristics

Wind direction in LSV Wind direction in LSV
0 0

270

270

(a)

Wind direction in SNR Wind direction in SNR
0 0

270

180 180

(b)

Figure 4-12. Rose diagrams of the two pairs of wind direction for(a) Lesvos and (b)
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Wind direction in MHN Wind direction in MHN
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Figure 4-13. Rose diagrams of the two pairs of wind direction for (a) Cabo Begur and (b)
Mahon.

After evaluating the performance of the examined regression/calibration methods presented in
Section 2.6.2 with the statistical measures presented in Appendix B.4, the calibrated/corrected
values of @, denoted by 8, are used from the three applied calibration methods, i.e. classical
circular calibration (AC1), inverse circular calibration (AC2), and circular calibration based on
orthogonal distance (AC3).

In Table 4-8 and Table 4-9, the results obtained after the calculation of the abovementioned
statistics for the different calibration techniques applied at each location are presented. The bold
faced numbers denote the best value for each statistical criteria at the examined locations. The
most striking result is that the inverse circular regression performs almost systematically better
compared to the other two calibration methods. Specifically, the following results can be drawn:

1. As regards Table 4-8, from the overall combination of four locations and five statistical
measures (i.e. 20 outcomes in total), AC2 performs better in 12 out of 20 outcomes, while
AC1 and AC3 perform better 4 times each.

2. Asregards Table 4-9, AC2 performs better in 11, AC1 in 5 and AC3 in 4 outcomes out of
the total 20.

3. The values for MCAE and RME are systematically better for AC2, irrespectively of the
gridded wind data source.

4. Overall, the lower values for BIAS, MCAE, RME and MRB are depicted after applying
the calibration models for the ERAI results, apart from BIAS in Santorini and Mahon, and
MRB in Lesvos.

5. All statistical criteria are fairly improved after applying the proposed circular calibration
methods (apart from MRB in Lesvos), even if the data are not highly correlated/associated.
This clearly suggests that circular calibration should be applied when an increased
accuracy of wind direction is required.
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Table 4-8. Statistical measures for the examined locations between buoy data and ERAI
results before calibration (BC) and after calibration based on classical circular
calibration (AC1), inverse circular calibration (AC2), and circular calibration based on
orthogonal distance (AC3).

Location Case Tee BIAS MCAE RME MRB
LSV BC 0.4135 0.0820 0.6758 0.3090 —0.0454
AC1l 0.5230 —0.0097 0.6357 0.2974 0.0163
AC2 0.5336 —0.0360 0.5842 0.2848 0.0141
AC3 0.5259 —0.0450 0.5986 0.2880 0.0168
SNR BC 0.7204 0.1091 0.4944 0.2279 —0.0776
AC1 0.7589 0.0655 0.4611 0.2171 —0.0063
AC2 0.7438 —0.0501 0.4316 0.2078 0.0101
AC3 0.7521 -0.0258 0.4368 0.2100 0.0017
BGR BC 0.6450 —0.1660 0.5259 0.2663 —0.0058
AC1l 0.6437 —0.0544 0.5346 0.2682 —0.0068
AC2 0.6478 —0.0558 0.5219 0.2653 —0.0015
AC3 0.6447 —0.0346 0.5257 0.2661 —0.0059
MHN BC 0.8052 —0.2326 0.4527 0.2242 —0.0138
AC1l 0.8159 —0.1149 0.4477 0.2218 0.0040
AC2 0.8169 —0.1653 0.4409 0.2209 0.0062
AC3 0.8171 —0.1335 0.4431 0.2211 0.0048

Table 4-9. Statistical measures for the examined locations between buoy and BSW data
before calibration (BC) and after calibration based on classical circular calibration
(AC1), inverse circular calibration (AC2), and circular calibration based on orthogonal
distance (AC3).

Location Case Tee BIAS MCAE RME MRB
LSV BC 0.0252 —0.1368 0.8193 0.3619 0.0003
AC1 0.4145 0.1134 0.7559 0.3403 0.0120
AC2 0.3529 —0.0685 0.7098 0.3275 0.0325
AC3 0.3727 —0.0291 0.7220 0.3301 0.0276
SNR BC 0.6610 0.1411 0.5999 0.2630 —0.0920
AC1 0.6850 —0.0144 0.5357 0.2469 —0.0054
AC2 0.6745 —0.0582 0.4923 0.2330 0.0174
AC3 0.6835 —0.0512 0.5017 0.2367 0.0050
BGR BC 0.4736 —0.1582 0.7256 0.3358 —0.0698
AC1 0.5023 —0.1649 0.7217 0.3301 —0.0269
AC2 0.5193 —0.1564 0.6953 0.3225 —0.0055
AC3 0.5134 —0.0802 0.7025 0.3244 —0.0216
MHN BC 0.6838 —0.3787 0.6107 0.2832 —0.0188
AC1 0.7162 —-0.1071 0.6092 0.2836 —0.0175
AC2 0.7155 —0.2319 0.6057 0.2825 —0.0116
AC3 0.7179 —0.1531 0.6065 0.2829 —0.0150

In the left panels of Figure 4-14, the situation before and after applying the calibration methods
is presented for Lesvos location and both pairs of datasets by means of a scatter plot. This
particular location was chosen in order to show the behaviour of AC2 method for two opposite
situations: in the case of the pair “Buoy-ERAI”, AC2 outperforms considerably the other
methods (see also Table 4-8) while for the other pair of data the performance of AC2 is poorer
(see also Table 4-9). With the reference line y = x in mind, it is deduced that all calibration
methods tend to shift more pairs towards this line with AC2 method reaching better results. A
clearer conclusion is presented in the right panels of the same figure, where the histogram of
the absolute circular distance is plotted for all the examined calibration methods; for clarity
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purposes, only the central value of each bin (of 5° width) is depicted. The obtained results show
that for smaller values of absolute circular distance, the most counts are provided for AC2 while
as this value gets bigger (e.g. over 20°) then fewer counts correspond to this method. Finally,
from these outcomes there is strong evidence that circular calibration should take part in studies
where the accurate representation of direction is of importance.

Finally, in Figure 4-15 the calibrated wind directions for the best method is presented for each
pair as regards Lesvos location. Comparing this figure with the corresponding ones before the
calibration (see Figure 4-12(a)), it is once again verified that the calibrated values of wind
direction obtained from the less accurate data sources are closer to the buoy measurements,
even for the sectors with low frequency of occurrence.
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Figure 4-14. Calibration plots (left column) and histogram of absolute circular distance
(right column) for (a) ERAI and (b) BSW data and all examined calibration methods in

Lesvos.
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4.3.4 Final comments

Linear data (e.g. wind speed data) from various sources quite often include erroneous
observations that either can remain unnoticed or hidden in classical regression analysis or can
be excluded from further assessment on the basis of some diagnostic tools. In either case, the
results of the analysis may be highly misleading, since the presence of outliers or their false
rejection can seriously affect the regression procedure (parameter estimation) and,
consequently, the calibration results. Therefore, before proceeding to any analysis, the
identification of outliers is an important, but rather delicate, procedure.

Wind direction in LSV
0

(b)

Figure 4-15. Rose diagrams after the calibration of wind direction with AC2 method of the
pairs (a) buoy-model and (b) buoy-satellite for Lesvos.

In Section 4.3.2, robust estimators were described and applied for correcting wind speed
measurements from less reliable data sources with reference to in situ measurements. Such
measurements are prone to the presence of outliers and influential observations and as a
consequence, the obtained results can be fallacious to derive decisions in wind speed
assessment. Two different types of concurrent wind data sets referring to four offshore locations
across the Mediterranean Sea were used: wind speed time series obtained from buoys and wind
speed time series obtained from a high-resolution NWP model results covering various
recording periods. The primary statistical analysis showed that wind speed is, in the mean,
underestimated for the results of the examined atmospheric model compared to buoy
measurements.

The evaluation of each robust method, along with the traditional OLS approach, was made by
applying the regression and calibration procedure for different time periods (and consequently,
different data samples). Using the entire available data sample (i.e. case C.1 above), the
regression (and calibration) coefficients were estimated. In the other examined case (i.e. case
C.2 above), an alternative methodology was applied for a more realistic and practical
evaluation, where the regression (and calibration) relations were assessed from “‘unused’ wind
measurements. Since there is not a unique statistical criterion for evaluating the performance of
the examined calibration methods, several different statistical criteria were applied.

The obtained results from the evaluation procedures revealed that least trimmed squares (and
secondarily, Li-estimator) method performed systematically better for each examined case and
for all locations than the rest methods. OLS method seemed to give rarely better results.
Furthermore, the validity and performance of the regression/calibration methods was tested in
the estimation of the mean wind power density. This assessment confirmed the results already
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obtained from the evaluation of wind speed. Specifically, it was found that least trimmed
squares and Li-estimator methods performed systematically better than OLS, while the latter
provided always the greatest relative estimation error.

Overall, robust statistics can provide a means for dealing efficiently with outliers in wind data
samples in a theoretically justified way, while their implementation to wind energy assessment
proved to give better results than classical OLS method. Least trimmed squares and Li-
estimator methods are characterized by their appealing definition and computability and can
provide reasonable results, even if the outliers in the examined sample are numerous.
Furthermore, another straightforward and efficient approach is to detect unusual wind speed
data, with an emphasis on bad leverage points that have large residuals, through least trimmed
squares analysis and then perform OLS regression without (all or a part of) these observations.
Therefore, it is suggested that the use of robust methods should be seriously considered in wind
energy related applications, since their effectiveness with samples containing outliers is
indubitable.

In Section 4.3.3, three different circular regression/calibration models are proposed in order to
correct wind data from less reliable wind data sources by using, as a reference source,
measurements from oceanographic buoys. The examined data samples consist of two pairs of
concurrent wind directions: 1) buoy measurements and results from the ERA-Interim data base,
and; 2) buoy measurements and outputs from the Blended Sea Winds data base. Four locations,
located in the Mediterranean Sea, are examined for each group with data covering a 3-year
period.

The regression models were based on a tangent mapping while the parameter estimation was
based on the minimization of circular distances. Moreover, it was assumed that the independent
variable (i.e. wind direction from buoys) was error-free in contrast with the dependent one (i.e.,
wind direction from the gridded data sets). The evaluation of the proposed calibration models
was based on five statistical criteria. The obtained results suggest that the inverse calibration,
generally, performs better than the classical calibration and the calibration based on the
orthogonal distance as regards the adopted statistical measures. In this respect, circular
calibration should complement linear calibration, in cases where the accuracy is important such
as wind energy assessment. Further work on the calibration of wind direction includes models
that take into consideration errors in both variables or models that detect possible outliers.

4.4 Probabilistic modelling of metocean data

4.4.1 Synopsis

In this section, three families of models for the joint probabilistic description of wind speed and
wind direction are examined and thoroughly evaluated, namely Johnson-Wehrly (JW) and two
families of copulas (Farlie-Gumbel-Morgenstern (FGM) and Plackett (PLA)). These models
are applied on long-term wind data obtained by two oceanographic buoys at different locations
of the Mediterranean Sea, one in the Greek and the other one in the Spanish waters. The
proposed bivariate models are theoretically sound and tractable, since they are defined by
closed relations and are constructed by considering the marginal (univariate) distributions of
wind speed and wind direction along with an appropriate dependence structure of the involved
variables. In the univariate case, wind speed modelling is based on a wide range of conventional
and mixture distributions, while wind direction is modelled through finite mixtures of von
Mises distributions. The evaluation of the bivariate models is based on seven bin-specific
goodness-of-fit criteria. The obtained results suggest that the performance of the JW model is
rather superior, since it provides better fits compared to the other two families of bivariate
distributions for the overwhelming majority of the examined cases and criteria. The most
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efficient bivariate model is then implemented to estimate the detailed structure of wind power
density at one selected location.

Part of the results presented in the following analysis have been published in:

Soukissian, T.H., Karathanasi, F.E., 2017. On the selection of bivariate parametric models
for wind data. Applied Energy 188: 280-304.

4.4.2 Univariate and bivariate models for linear and directional variables

Univariate distributions for wind speed

Various univariate probability distributions can be used for fitting wind speed data; see Section
1.2.1. and references therein. In this analysis, the conventional parametric distributions,
presented in Table 4-10, were initially evaluated using the Kolmogorov-Smirnov (K-S) and
Anderson-Darling (A-D) goodness-of-fit tests.

After the pre-evaluation of these distributions (see Section 4.4.3 for more details), the most
efficient distributions (i.e. those with an optimal performance regarding modelling of wind
speed data in the examined locations) were identified and examined analytically, namely: Beta
(BET), Burr (BUR), Dagum (DAG), Fatigue Life (FAL), Gamma (GAM), Generalized
Extreme Value (GEV), Genelalized Gamma (GNG), Generalized Logistic (GNL), Generalized
Pareto (GPA), Johnson SB (JSB), Kappa (KAP), Log-Logistic (LGL), Lognormal (LGN), Log-
Pearson 3 (LP3), Pearson 6 (PE6), Pert (PER), Rayleigh (RAY), Wakeby (WAK) and Weibull
(WEI) distributions. The definitions of the most usual probability distributions in wind energy
assessment are presented in Section 1.2.1. Some of the distributions in the above table consider
one or more location parameters. The consideration of such distributions is advocated by the
fact that if these distributions provide a better fit than the location-free ones, then the former
should be examined in the evaluation of the corresponding bivariate models.

For the better representation of wind regimes with particularities, apart from the conventional
parameters, three parametric homogeneous and heterogeneous mixture distributions are
additionally considered for wind speed modelling. Specifically, the homogeneous 2-parameter
Weibull mixture (WW), the normal (truncated from below) mixture (NN), and the
heterogeneous 2-parameter Weibull-Generalized Extreme Value mixture (WGEV) are
examined (all with two components); for the corresponding definitions see also Section 1.2.1.

Table 4-10. Conventional parametric distributions for modelling wind speed.

Number of Conventional distributions
parameters
1 Rayleigh
2 Chi-Squared, Exponential, Gaussian, Levy, Log-Gamma, Nakagami, Pareto,
Rayleigh, Reciprocal, Rice, Uniform
3 Erlang, Fatigue Life, Fréchet, Gamma, Generalized Extreme Value,

Generalized Logistic, Generalized Pareto, Inverse Gaussian, Log-Logistic,
Lognormal, Log-Pearson 3, Pearson 5, Pert, Power function, Weibull

4 Beta, Burr, Dagum, Generalized Gamma, Johnson Sg, Kappa, Kumaraswamy,
Pearson 6
5 Wakeby
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Univariate distributions for wind speed

As regards the directional variable (i.e. wind direction), a finite mixture of von Mises (VM)
distributions is implemented; see Section 1.2.2 for the definition. In respect with the problem
of selecting the number of components for describing this finite mixture model in an easy and
fast way, it is still an open issue. In this study, the Bayesian information criterion (BIC),
proposed by Schwarz (1978), was applied in order to select the optimal number of components
for each finite mixture model. BIC is defined by

BIC = —2logL + b InN, 4.7

where L is the maximized value of the likelihood function for the mixture model, and b is the
number of parameters in the mixture model. At the right-hand side of Eq. (4.7), the first termis
a measure of lack of fit and the second one measures the degree of complexity of the model.
Moreover, the algorithm proposed by Garcia-Portugues (2013) was applied for selecting the
range of the number of components; the number of components that minimized the BIC
function was selected as the most optimal value for the estimation of the parameters.

In regard of the bivariate case of modelling wind speed and wind direction, the Johnson-Wehrly
(JW), the Farlie-Gumbel-Morgenstern (FGM) and the Plackett families of distributions are
assessed; for a brief theoretical background on these distributions see Section 1.3.1.

4.4.3 Goodness-of-fit testing

Regarding wind speed, a preliminary selection of the most efficient distributions, out of the 36
conventional distributions that were initially examined (see Table 4-10), was based on the
Kolmogorov-Smirnov (K-S) and Anderson—Darling (A-D) goodness-of-fit tests. K-S test is
non-parametric and is based on the absolute deviations (largest vertical distances) between the
empirical distribution function (i.e. sample cdf) and the specified hypothetical continuous cdf.
The main disadvantage of this test is its sensitivity near the centre of the distribution and that
the distribution must be specified. A modification of K-S test is A-D test that is used to verify
if the sample data comes from a population with a specific distribution. The critical values of
A-D test are dependent on the specified distribution that is being tested in contrast to K-S test,
allowing in this way a more sensitive test. A-D test gives more weight to deviations at the tails
of distributions than K-S test. The two tests are not equivalent and may generate inconsistent
indications of fit performance among the candidate pdfs; see, e.g. Chang (2011), and Soukissian
(2013). Therefore, the ten best-fit distributions, characterized by the smallest test statistics,
according to K-S test and the corresponding ones according to A-D tests were identified for the
examined locations. Nevertheless, the final number of the analytically examined distributions
for each location was less than 20 due to several overlaps between the best-fit distributions
provided by the two tests; see also Section 4.4.4.

In order to characterize the obtained fits in a uniform way, the final evaluation of the
distributions was based on the coefficient of determination R ; (the lower index ‘1° denotes
the univariate case), which quantifies the association between the observed cumulative
probabilities and the predicted cumulative probabilities of a wind speed distribution. For each
definition, see Appendix B.5. This coefficient has been adopted in many wind speed modelling
studies; see, for example, Carta et al. (2009) and references therein, Ouarda et al. (2015).

On the other hand, the evaluation of the bivariate (and multivariate, in general) models is not a
trivial issue, since the available statistical tools are rather poor (McAssey, 2013). Although the
literature for multi-normal evaluation is abundant, the corresponding tests cannot be directly
extended in the general multivariate case, not even for the bivariate one. McAssey (2013) also
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states that some attempts for establishing goodness-of-fit tests in multiple dimensions are either
extremely difficult to compute or intractable for most multivariate distributions. In the present
analysis, the evaluation of the obtained bivariate fits was based on seven bin-specific measures
of performance, which are presented here due to their rare appearance in the corresponding
literature.

Let pi(;.)) denote the fraction of points (from the real data set) that belong in the (i, j) —bin (cell)

and pl.(je)

Nl.(j") denote the observed number of data points falling in the (i, ) —cell. A data point (x, 6)
belongs in the (i, /) —cell if (x; < x < x;14) and (6, < 6 < 6;,) where x;, 6;, i = 1,2, ..., 1,
j =1,2,...,m, are the corresponding cell boundaries.

the corresponding fraction of points from the estimated bivariate distribution. Let also

For the estimated (theoretical) bivariate pdf, the probability that an observation falls in this cell
is evaluated as follows:

Pri(x,0) € cell(i, )] = p = Fxo(Xis1,6141) — Fxo(¥is1, 6))

(4.8)
_FX,@ (Xi, 9]'_,_1) + FX,@ (Xi, 9])
The root mean square error (RMSE) is defined as
SS
RMSE = |—= (4.9)

Nz’

2
where SSg =3 ; (pl-(]‘-)) —pl-(f)) is the sum of squared error, which measures the total

difference between the observed and the expected frequency for all bins, and N7 is the total
number of bins.

The relative root mean square error (RRMSE) is defined as

SRS

RRMSE = ,
Nz

(4.10)

(0)_. (e

2

S —p 2

where SRSg = ¥, ; <p”pr”> =Xij (1 — pi(je)) is the sum of relative squared error.
]

The mean absolute error (MAE) is defined as

1

_ 1N o @

MAE = - E s =)
LJj

(4.11)

The index of agreement (1A), suggested by Zhou et al. (2010), is defined as

2
Z-,- p.(?) —p.(.e)
A=1-— u (P = i) 1A € [0,1], (4.12)

o (i) = 5°1)”

100



Chapter 4

where p{](."), plf](.e) denotes the difference between the observed and the mean frequency, and the

difference between the estimated and the mean frequency, respectively. Willmott (1982)
introduced this statistic while Webb et al. (2009) applied this index to wind erosion analysis.

The y? statistic (also called y2 —error) is defined as

©) _ (@) ©) _ (@)
. () = mvl?) (v — v (4.13)
X Z (e) Z (e) ' '
0 "Pij oo Py

where n denotes the total number of observations.

The adjusted coefficient of determination RZ, (lower index ‘2’ denotes the bivariate case)
measures the strength of the linear relationship between the expected and the observed
frequencies of all bins and is defined as

(N — 1)SSg
(N —q—1)SSt’

R, =1 (4.14)

where g is the number of parameters estimated for the particular distribution, N is the total
number of non-empty bins and SSt denotes the total sum of squares, reflecting the total

difference between the observed frequencies and the average frequency 5(") for all bins, i.e.
2
SSt =2 (Pi(](-)) - P(O)) :

The bivariate pdfs providing the smallest values of RMSE, MAE, RRMSE and 2, and the
highest values of RZ , and 1A are likely to be characterized by a smaller fit error.

Moreover, Mathisen and Bitner-Gregersen (1990) proposed a more sophisticated method for
the evaluation of the bivariate fits based on the normalized deviation d;; between the observed

number of data points Ni(j") falling in a cell and the expected number of points npi(f). dij is
provided by

() (e
N7 —np;;
dyj = ————>, (4.15)

o

ij
where al.(je) is the normalizing factor. ai(je) is the expected standard deviation for the number of
data points falling in the cell according to the binomial distribution, since each outcome may

be considered as ‘success’ (i.e. the data point lies inside the examined cell) or ‘failure’;

i ij

adopted model. In addition, positive values denote that the fitted model assigns a lower
probability compared to the actual data in the specific cell; the opposite holds true for negative
values.

therefore, a.(je) = \/npi(je) (1 - p.(.e)). Values of d;; close to zero indicate a good fit of the

The main conceptual difference between the different fit performance measures used here is
that d;; provides a characterization of the performance of the estimated analytic bivariate pdf
in the entire domain of (x, 8) while the other measures provide a unique characterization for
the performance of the model. Thus, d;; identifies the particular areas in the (x,8) —plane
where the bivariate model either performs well or underperforms.
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4.4.4 Data and numerical results

Long-term measured wind speed and direction data from one Greek oceanographic buoy of the
POSEIDON marine monitoring network and one Spanish oceanographic buoys of the Spanish
Port Authority (Puertos del Estado) are presented in this analysis; their exact location and
measurement period are shown in Table 4-11. Three more buoys and one onshore
meteorological mast for wind measurements of the Centre for Renewable Energy Sources and
Saving (CRES) were additionally included in Soukissian and Karathanasi (2017). Before the
statistical analysis and the parameter estimation procedure, the wind data were corrected and
filtered, negative and stacked values were removed, while only concurrent measurements of
wind speed and wind direction were taken into consideration.

Table 4-11. Station names, geographical locations, recording periods and sample sizes of
wind data sets.

Name location Latitude, longitude (°) Measurement period n
Crete 35.79°N, 24.92°E 2007-2015 12,665
Mar de Alboran 36.27°N, 5.03°W 1997-2006 29,100

In Table 4-12 and Table 4-13, the main statistical parameters of wind speed u (e.g. standard
deviation s,,, coefficient of variation CV,,, skewness Sk,,, kurtosis Ku,,) and wind direction 6
from the above data sets are presented, respectively. The most intense wind climate corresponds
to Crete, with mean wind speed m,, =5.414 m/s and overall maximum value of wind speed
max,, =18.75 m/s.

Table 4-12. Basic (linear) statistics of wind speed at the examined locations.

Name location m, min,, max,, Sy cv, Sk, Ku,
(m/s) (m/s) (m/s) (m/s) (%) @) @)

Crete 5.414 0.195 18.750 2.809 51.874 0.567 0.321

Mar de Alboran 5.273 0.200 16.900 2.949 55.926 0.368 —0.553

As regards the corresponding results for wind direction, it is noticed that the winds blow, in the
mean, from the WNW sector for both examined locations. The highest value of mean resultant
length R, is depicted at Crete, suggesting rather concentrated data while highest values of
circular variance Vy (and sg) corresponds to Mar de Alboran denoting that wind direction in
this location is more uniformly distributed on the circle compared with the Greek location.
Finally, the highest value, in the absolute sense, of circular skewness Skg is encountered at Mar
de Alboran (-0.493) denoting that the corresponding dataset is rather non-unimodal.

Table 4-13. Basic (circular) statistics of wind direction at the examined locations.

Name location my Ry Vo So Sko Kug
(rad) () ) (@) (@) (@)

Crete 5.285 0.396 0.604 1.099 -0.041 0.269

Mar de Alboran 5.059 0.097 0.903 1.344 —0.493 0.207

Univariate distributions for wind speed

For each examined location the preliminary selection of the distributions that are further
analysed was made by using K-S and A-D goodness-of-fit tests as mentioned in Section 4.4.3.
These distributions along with the corresponding K-S and A-D test statistics are summarized in
Table 4-14. In the same table, the corresponding values for the mixture distributions are also
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provided (i.e. WW), WGEV and NN). Empty cells denote that the provided test statistic values
are too large.

Overall, 19 conventional distributions and three mixture distributions with two components
were further evaluated by means of RZ ;. The corresponding results, shown in Figure 4-16, are
plotted appropriately scaled, i.e. using |log(1 — RZ ;)| instead of RZ , since the values of the
latter are often very close to each other, rendering their differences imperceptible in a graph.

The results of the evaluation based on R2 ; suggest the following: as regards the conventional
distributions, WAK distribution provided the best fit for both locations, KAP distribution
provided the second best fit again for both locations while GEV and GNG provided the third
best fit for Crete and Mar de Alboran, respectively. As regards the mixture distributions, NN
provided a better fit than WGEV and WW for Crete and WW provided a better fit than the other
two for Mar de Alboran.

Table 4-14. Kolmogorov-Smirnov and Anderson-Darling test statistics.

Distributions Test Crete Mar de Distributions Test Crete Mar de
Alboran Alboran
BET K-S 0.032 0.041 LGL K-S 0.027
A-D 11.026 62.371 A-D 14.965
BUR K-S 0.03 0.050 LGN K-S 0.026
A-D 9.807 117.03 A-D 7.058
DAG K-S 0.030 0.033 LP3 K-S 0.041
A-D 9.963 35.171 A-D 77.784
FAL K-S 0.027 NN K-S 0.030 0.030
A-D 7.279 A-D 2.495 7.852
GAM K-S 0.029 PE6 K-S 0.026
A-D 7.930 A-D 7.639
GEV K-S 0.023 0.049 PER K-S 0.044
A-D 5.689 118.88 A-D 69.657
GNG K-S 0.026 RAY K-S 0.051
A-D 20.151 A-D 129.05
GNL K-S 0.029 WAK K-S 0.016 0.013
A-D 17.36 A-D 419.47 1504.9
GPA K-S 0.030 WEI K-S 0.032 0.056
A-D 2933.1 A-D 10.906 120.88
JSB K-S 0.025 0.029 WGEV K-S 0.030 0.024
A-D 6.318 126.24 A-D 3.340 4.823
KAP K-S 0.027 0.020 WWwW K-S 0.021
A-D 5.676 25.036 A-D 4.149
Cret
(@) (b)

Figure 4-16. Values of coefficient of determination RZ ; for the corresponding probability
distribution functions for (a) Crete and (b) Mar de Alboran.
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Summing up, the six best fits for each location that are analytically assessed in the bivariate
case, are summarized as follows (numbers in parentheses denote the corresponding values of

R§,1)3

o Crete: NN (0.99961), WAK (0.99960), WGEV (0.9995), KAP (0.99930), GEV
(0.99928), LGN (0.9991);

o Mar de Alboran: WW (0.9998), WAK (0.99976), WGEV (0.9997), KAP (0.9992), NN
(0.99883), GNG (0.99880).

Notice that KAP and WAK distributions appear between the best-fit distributions for the two

examined locations. In Figure 4-17, the histograms of wind speed along with the six best fit
pdfs are plotted for the examined locations.

Univariate distributions for wind direction

In Table 4-15, the parameters of the mixtures of vM distributions (see Eq. (1.36)) for wind
direction modelling are summarized, providing also the weighting parameter. Based on the BIC
criterion, Crete and Mar de Alboran were described with four and three components,
respectively.
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Figure 4-17. Histograms of wind speed along with the best fits from the corresponding
probability density function for (a) Crete and (b) Mar de Alboran.
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|

Table 4-15. Parameters of the best-fit wind direction distributions used in bivariate
modelling. x and w parameters are dimensionless and u parameter is in rad.

Parameters Crete Mar de Alboran

Ki,i—1,2,.. 0.499 6.517
1.359 5.361
5.778 0.406
8.964

Ui, i —1,2, .. 2.665 1.236
2.007 4544
5.918 1.426
4.824

w;, i —1,2, ... 0.176 0.321
0.164 0.464
0.298 0.215
0.362
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In Figure 4-18, the histograms of wind direction along with the vM mixture distributions are
plotted for the examined locations. From the shape of these histograms, it is evident that the use
of mixture of circular vM distributions for modelling wind direction at the examined locations
is inevitable.

1500 — 2500 —

M
 —
W

500 —

25 3 is 4 25 3 is 4
Wind direction (rad) Wind direction (rad)

(a) (b)

Figure 4-18. Histograms of wind direction along with the fitted mixtures of vM distributions
for (a) Crete and (b) Mar de Alboran.

Bivariate distributions of wind speed and direction

The values of the parameters rzgy and ¥p involved in the FGM (see Eq. (1.43)) and PLA (see
Eqg. (1.48)) family of distributions, respectively, are shown in Table 4-16. From the obtained
values of rggy it is concluded that the FGM model can be safely applied for the two locations,
since —1/3 < rggy < 1/3.

Table 4-16. Parameters of the bivariate models FGM and PLA.

Parameters Crete Mar de Alboran
TRGM 0.106 0.263
Yp 1.150 1.208

Regarding the JW family, in Table 4-17, the parameters of the vM mixture for modelling v
variable, see Eq. (1.40), are provided for the examined locations and pdfs of wind speed.

Evaluation of the fitted bivariate distributions

For the evaluation of the obtained bivariate distributions RMSE, RRMSE, MAE, 1A, y? and
RZ ,, along with the deviance statistic, are calculated. In Table 4-18 and Table 4-19, the values
of the above measures are shown for the six best fit wind speed pdfs for the examined locations.
Since the involved quantities in the estimation of these measures are expressed through
frequencies (y? error represents ‘counts’), all presented measures are dimensionless. The wind
speed distributions in the tables are sorted in a decreasing order according to the values of the
RZ, criterion. Boldface numbers denote the best value of the particular measure for each
bivariate family, while both italics and boldface numbers denote the overall best value of the
particular measure for all bivariate families. Furthermore, in Figure 4-19, the deviance statistic
is plotted for each bivariate family.
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Table 4-17. Parameters of the vM mixture of distributions for i variable of the JW family
for the examined locations. k,, k,, w;, w, parameters are dimensionless and u, i,
parameters are in rad.

Location Probability distributions and parameters
GEV KAP LGN NN WAK WGEV
K1, Ky 0.758 0.466 0.768 0.464 0.782 0.802
0.372 0.747 0.464 0.769 0.478 0.404
Crete Uy, Uy 5.709 2.938 5.710 2.972 5.755 5.768
3.001 5.704 2.939 5.734 2.982 3.072
Wy, Wy 0.503 0.453 0.539 0.467 0.530 0.491
0.497 0.547 0.461 0.533 0.470 0.509
GNG KAP NN WAK WGEV WWwW
K1, Ky 0.348 0.218 0.762 0.229 0.746 0.274
Mar de 0.844 0.772 0.338 0.762 0.335 0.791
Alboran Uy, Uy 3.824 3.658 0.686 4.082 0.662 3.806
0.642 0.583 3.875 0.735 3.812 0.658
W1, Wy 0.467 0.494 0.562 0.487 0.567 0.478
0.5333 0.506 0.438 0.513 0.433 0.522

Some conclusions as regards the general behaviour of the three examined bivariate approaches
can be summarized as follows:

i. The overall largest values of R;Z and IA, and the overall smallest values of RMSE, MAE,
RRMSE (except for Mar de Alboran), and y? statistic (except for Mar de Alboran) are
consistently provided by the JW family, i.e. JW family provides the optimal values for
the test statistics in 16 out of 18 cases. Although the differences between the values of
these measures with respect to the examined bivariate families are not large, JW family
provides consistently the optimal values. This result suggest the superiority of the JW
family in comparison to the FGM and the PLA families of distributions.

ii. FGM family performs better than PLA family with respect to all measures of evaluation
for Mar de Alboran while PLA family performs better than FGM family with respect
RMSE, MAE, x? and R2 , for Crete.

iii. For Crete, the best-fitting models from all the examined families include mixture
distributions for wind speed.

Crete Mar de Alboran
JW model (for WGEV distribution) JW model (for GNG distribution)
104 4 10| 2
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R L SN 3 5 6 10 e e e 3 s 6
1 2 ) 1 2
Wind speed (m/s) Wind dircction (rad) Wind speed (m/s) Wind direction (rad)
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Figure 4-19. Normalized deviations for JW, FGM and PLA bivariate families for (a) Crete
and (b) Mar de Alboran.
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As regards the specific performance of the JW, FGM and PLA families with respect to the
univariate distributions of wind speed, the following conclusions can be drawn:

i. The statistical measures examined do not provide, in general, compatible suggestions of
the bivariate distribution fit performance. The issue of inconsistency between different
statistical measures is known for the univariate evaluation of goodness of fit; see, for
example, the relevant discussion in Zhou et al. (2010). Thus, the selection of the best fit
is confined to the number (multitude) of criteria suggesting the optimal fit.

ii. In general, the bivariate best-fit distribution is not provided by the corresponding
univariate best-fit distribution for wind speed.

iii. For Crete, the bivariate best-fit distribution is provided by the JW family for the WGEV
mixture (RMSE, MAE, 1A and R; , provide the overall optimal values).

iv. For Mar de Alboran, the bivariate best-fit distribution is provided by the JW family for
the GNG distribution (RMSE, IA and RZ , provide the overall optimal values).

In order to evaluate in further detail the comparative performance of JW, FGM and PLA
families in the entire (u, 8) —plane, the normalized deviation d;; is presented in Figure 4-19
for the best bivariate fit for each family, according to the selection presented above. The values
of the normalized deviation that are close to zero indicate a good fit of the adopted model.
Negative and positive values indicate overestimation and underestimation, respectively, of the
probability mass of the particular cell by the fitted distribution. According to the examined
bivariate models and locations, the overall range of d;; is between -5 and 12. Specifically, for
Crete, all models underperform for wind directions around the northern sector with
simultaneous high values of wind speed while for Mar de Alboran, it seems that the bivariate
models underperform (although with a variable intensity) in an extended area of (u,8)
combinations. Overall, the poor performance of the bivariate models is more evident for the
FGM and PLA families. The obtained results suggest that JW model performs better compared
to the other two approaches; although the pattern of d;; provided by the three families is almost
identical for all the examined locations, the corresponding values are lower for the JW model.
In conclusion, taking into consideration the results provided by the seven metrics used in this
analysis, the JW family seems to provide consistently the best fits and may be used as a solid
base for bivariate modelling of wind speed and direction (compared to FGM and PLA families).
A potential improvement in the results of the JW model may be based on the consideration of
non-negative trigonometric sums for the modelling of fy (). As noted by Fernandez-Duran
(2007), the use of this representation may provide flexibility in the modelling of different (even
of very complex) dependence structures.

In Figure 4-20-Figure 4-22, the selected bivariate best-fit pdfs of wind speed and wind direction
according to JW, FGM and PLA families of distributions for the examined locations are
presented. In general, the patterns of the FGM and PLA models have a strong resemblance. As
regards wind direction, the location of the peaks from the univariate vM mixture model is very
close to the corresponding one of the bivariate case at each examined site. Similarly, as regards
wind speed, the highest values of f;; o, are depicted in the ranges that are consistent with the
histograms of Figure 4-17. Moreover, FGM and PLA models exhibit, in general, smoother
shapes for f;; o than JW family at each location.
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Crete (for WGEV distribution) Mar de Alboran (for GNG distribution)
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Figure 4-20. Best-fit for bivariate pdfs of wind speed and wind direction for JW family for (a)
Crete and (b) Mar de Alboran.

Crete (for NN distribution) Mar de Alboran (for GNG distribution)
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Figure 4-21. Best-fit for bivariate pdfs of wind speed and wind direction for FGM family for
(a) Crete and (b) Mar de Alboran.

Crete (for NN distribution) Mar de Alboran (for GNG distribution)
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Figure 4-22. Best-fit for bivariate pdfs of wind speed and wind direction for PLA family for
(a) Crete and (b) Mar de Alboran.
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4.4.5 Application in wind energy assessment

The preliminary assessment of the available offshore wind power potential in an area requires
the estimation of the theoretical wind power density per rotor swept area. For a homogeneous,
isotropic, free-stream air flow with wind speed u = u,,, the theoretical wind power density P,
is given by

1
P0 — Epugo (416)

Due to the temporal and spatial variability of wind speed, wind direction and air density, more
detailed information as regards wind power for different occurrences of these variables at the
specific area is required during the stage of wind farm design and layout. In this respect, for the
evaluation of wind energy at a particular location, the wind power density distribution is used.
This quantity is estimated by

1
e(w,0,p) = 5P fy0, (1, 0,p), (4.17)

where fy; 0 p(u, 8, p) is the joint pdf of wind speed, air density and wind direction. e(u, 8, p)
depicts how wind energy is distributed at different values of air density, wind speed and wind
direction per unit time and swept area; see also Morrissey et al. (2010) and Carrillo et al. (2014).
Assuming that air density is constant, Eq. (4.17) is simplified to

e(,03) = 7 pu*fy 01, (418)

The total wind power density can be obtained from the above relation by

1 [U“max 2n
E(u,6;p) = Ef f pudfy o (u, 0) dudo, (4.19)
0

Umin

Where U in, Umax are the values of the minimum and maximum observed wind speed in the
area, respectively. Moreover, the output E-(u, @) from a single wind turbine, with a power
curve Pr is obtained by

U, 06,
E(w,0;p) =T, f f Pr(u)fye(u,0) dudb, (4.20)

61

where [uq,u,] is the effective range of wind speed for the particular turbine, [6,,6,] is the
domain of wind directions at the particular site, and T, is the particular time period considered.

From Eq. (4.18) very useful and detailed characteristics of the available wind resource can be
obtained at an area that can be further used as design parameters for the wind turbines and wind
farm layout; see also Carta et al. (2008b). In this connection, in Figure 4-23(a), the wind power
density per wind speed for five different and characteristic wind directions, i.e. e(u, 8 = 6; p),
is depicted for Mar de Alboran.
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— . —omis Mar de Alboran

Mar de Alboran

(a) (b)

Figure 4-23. Wind power density at various wind directions as a function of (a) wind speed
and (b) wind direction.

Note that Mar de Alboran, the wind power density takes its maximum value for the prevailing
wind direction, which is the typical parameter for setting the wind farm layout (Ng and Ran,
2016). However, there can be cases when the maximum of the wind power density curve is
obtained for the mean wind direction, suggesting that the most probable value of wind direction
is not necessarily the one that provides the maximum wind power density. In Figure 4-23(b),
the wind power density per wind direction for three wind speed ranges is provided, i.e.

f;‘: e(u, 8; p)du, where [u,,u,] is the particular wind speed range considered. Evidently, the

range [0, o) for wind speed provides the largest values of wind power density. Note that if the
horizontal axis in the latter figure is expressed in degrees then the values of the depicted
distribution of wind power density will change.

The above presented methodology can be directly and equally well applied for estimating the
bivariate pdf of wind speed and direction at the turbine hub height. Combining this information
with the turbine characteristics, the annual energy production of a wind farm can be estimated;
see also Chowdhury et al. (2013).

4.4.6 Final comments and discussion

The obtained results provided consistently the best values with respect to the above statistical
measures for the JW model, suggesting more appropriate fits at the two examined locations
compared to the other models. Therefore, it can be concluded that the JW family may be used
as a solid base for bivariate modelling of wind speed and direction (compared to the FGM and
PLA families). Moreover, in the Greek location, the best bivariate fit for each examined family
was obtained with respect to marginal mixture distributions for wind speed. On the other hand,
the best-fit wind speed distributions did not provide in general the best-fit models in the
bivariate case. In this respect, it seems that the consideration of several different (and not only
the best-fit) marginal wind speed distributions is necessary for obtaining the best bivariate fit.
FGM and PLA families provided values of the proposed statistical measures very close to each
other, with the former one performing better than the latter one in the majority of cases. After
obtaining the best bivariate model for the Spanish location, it was applied for estimating wind
power density per wind speed and per wind direction as a real-world scenario in wind farm
design.

Nevertheless, further research in bivariate modelling of wind speed and direction seems to be

essential. A step towards this direction may consist in the implementation of suitable models
from the fields of bivariate copulas and kernel density functions. Furthermore, the consideration
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of alternative circular models for the modelling of fi, (1) and/or f,(6) (e.g. through non-
negative trigonometric sums) in the JW model may provide more detail in the dependence
structure of wind speed and wind direction and more accuracy in the representation of the
bivariate family.

4.4.7 Recent advances

The superiority of JW has also been proved in another analysis, whose results have not been
published yet, that deals with the simultaneous study of wave energy flux and mean wave
direction by means of parametric and non-parametric bivariate distributions in the Greek Seas.
This study stresses the importance of including the directional wave parameter in wave energy
resource assessment studies through a straightforward application from the methodology
presented. The joint description of these two variables have not been presented yet in relevant
studies, although it is of high importance for the emerging wave energy sector. Let us note that
it is not among the scopes of this work to examine wave energy potential in Greece rather than
propose a methodology that should be employed in wave energy resource assessment studies,
especially when the performance of the wave energy converter is dependent on wave direction
(e.g. the Pelamis device).

In the context of this work, numerous parametric models have been addressed, either
conventional or mixture, and two non-symmetric kdf (Gamma and Lognormal kdfs) for the
linear variable in the univariate case. The directional variable is adequately described with one
parametric pdf (a finite mixture of the von Mises distribution) and one kdf (the Wrapped
Normal kernel model). After a thorough evaluation similar to the one presented in Section 4.4.3,
the best univariate (parametric) models for the linear variable are selected to proceed in the
bivariate case. The construction of the bivariate distribution functions of the examined
parameters (i.e. wave energy flux and mean wave direction) is accomplished through three
families of distributions in the parametric case, i.e. FGM and PLA families of distributions and
JW model, and the multiplicative kdf in the non-parametric case. A common feature to all these
bivariate models (parametric and non-parametric) is that their density functions rely on the
corresponding univariate marginal distributions, which are known beforehand (coming from
the marginal data) while the parametric bivariate models rely as well on an additional parameter
that quantifies the correlation/dependence of the variables. A detailed evaluation of the resulting
bivariate distributions is made by applying six bin-defined statistical metrics.

Indicatively, some preliminary results from this analysis are presented for Zakynthos location.
In Figure 4-24, the histograms of wave energy flux and wave direction are shown along with
the corresponding univariate distributions. The two kdfs and the WW model present a very
similar behaviour as regards the linear variable while the two fitted directional models seem to
be close to each other with small deviations regarding the peaks at 70° and 285° with the
Wrapped Normal kdf underestimating the histogram in both cases.

The values of the evaluation metrics for the bivariate parametric and non-parametric
distributions are provided for Zakynthos buoy in Table 4-20. Boldface numbers denote the best
value obtained from each metric for the examined bivariate families. For three out of six
evaluation metrics Lognormal kdf is the best model compared to both parametric and non-
parametric models and for three out of the six evaluation metrics the JW model provides the
best fit (but for two different parametric models).
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Figure 4-24. Histograms of (a) wave energy flux along with the best fits of the parametric
and non-parametric linear distributions and (b) wave direction along with the fitted
circular distributions for Zakynthos.

To sum up, the results from both studies demonstrate the significance in the use of parametric
univariate or bivariate models that are characterized by simplicity and straightforward
implementation and can capture almost all the information of a data set into just a small number
of parameters. Furthermore, the inconsistency between univariate and bivariate distributions
confirms the value of the proposed methodology in ocean energy assessment studies.

Table 4-20. Values of the goodness-of-fit criteria for three bivariate families of two
parametric models and the bivariate kernel models for Zakynthos.

Evaluation NN WW

measures JW FGM PLA JW FGM PLA GAM kdf LGN kaf
1A 0.994 0.981 0.993 0.994 0.982 0.992 0.992 0.993
MAE 0.366 0.487 0.401 0.371 0.489 0.409 0.275 0.269
Ré,z 0.979 0.930 0.972 0.977 0.931 0.970 0.976 0.976
RMSE 1.533 2.785 1.773 1.591 2.757 1.848 1.742 1.647
RRMSE 0.243 0.245 0.245 0.226 0.227 0.222 0.177 0.176
x? 273 492 372 251 466 335 169 162

4.5 Extreme modelling of metocean parameters including directionality

45.1 Synopsis

A wide range of wave energy applications rely on the accurate estimation of extreme wave
conditions while some of them are frequently affected by directionality. In this section, four
offshore/nearshore locations in the eastern Mediterranean Sea are selected with relatively high
wave energy flux values and extreme wave heights are examined with wave direction as a
covariate. The GP distribution is used to model the extreme values of wave height over a pre-
defined constant threshold, with its parameters being expressed as a function of wave direction
through a smooth form of Fourier series. In order to be consistent with the analysis obtained
from the independent fits for the eight directional sectors of 45-degree width, the estimation of
parameters is based on a penalized maximum likelihood criterion that ensures a good agreement
between the two approaches. The obtained results validate the integration of directionality in
extreme value models for the examined locations, and design values of significant wave height
are provided with respect to direction for the 50- and 100-year return period with bootstrap
confidence intervals.

This analysis has been accepted for publication in:
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Karathanasi, F., Belibassakis, K., Soukissian, T. Directional extreme value models in wave
energy applications. Atmosphere, in press.

45.2 Data and numerical results

Reanalysis wave data from the ERA-Interim database for four grid points located in the Eastern
Mediterranean Sea were used. The locations were selected according to their potential for
development of wave energy projects due to their high estimates of wave energy flux; see for
example, Ayat (2013); Karathanasi et al. (2015); Besio et al. (2016); Emmanouil et al. (2016).
The wave parameters that were obtained for the purposes of this work were the significant wave
height Hg and the mean wave direction 6,,. The geographical coordinates, the measurement
period and the sample size of each grid point are listed in Table 4-21.

Table 4-21. Station names, geographical locations, recording periods and sample sizes of
wave time series.

Buoy name Latitude, Longitude (°) Period Sample size
Aegean Sea 37.75°N, 25.25°E

Ligurian Sea 43.25°N, 9.75°E

Otranto Str. 40.25°N, 19.00°E 1979-2014 52596
Sicily Str. 37.75°N, 12.25°E

The results for the basic statistical parameters for Hg are presented in Table 4-22. The grid point
at Sicily Strait (hereafter, called ‘Str.”) seems to be a location with intense waves and moderate
variability followed by that in the Aegean Sea, which has values of skewness Sk, and kurtosis
Kuy, closer to zero denoting a less asymmetric dataset. On the other hand, the grid points at
the Ligurian Sea and Otranto Str. present higher variability and lower mean and median values.

Table 4-22. Basic (linear) statistics of significant wave height Hg at the examined locations.

. my,  medy, ming, maxyg SH CViyg Sky Kuy,
L-ocation m m  m  (m  (m (%) ©) ©)
Aegean Sea 1.0 0.8 0.1 54 0.7 69.5 1.3 5.3
Ligurian Sea 0.6 0.5 0.1 5.4 0.5 80 1.8 7.6
Otranto Str. 0.5 0.3 0.0 3.8 0.4 85.5 19 7.7
Sicily Str. 1.0 0.8 0.1 6.4 0.7 74.4 1.7 7.1

In Table 4-23, the values of the basic circular parameters for 8y, are provided. The rather high
value of Kug,, for the Aegean Sea (0.5) denotes a rather peaked distribution of wave directions,

which is also confirmed by the low value of sg, (1.1). The low values of EQW denote a weak
concentration of data about the mean direction.

Table 4-23. Basic (circular) statistics of wave direction at the examined locations.

. mgw RGW ng Sgw Skew Kugw
Hoeation (deg) O o) O O O
Aegean Sea 353.5 04 0.6 11 0.4 0.5
Ligurian Sea 272.3 0.3 0.7 1.2 -0.2 0.2
Otranto Str. 240.1 0.2 0.8 1.3 -0.3 -0.3
Sicily Str. 287.5 0.4 0.6 1.1 0.3 0.2

For each examined location, seven different combinations of the methods for threshold
selection and declustering are performed, i.e., each of the threshold selection methods (mean
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excess function, threshold stability plot, percentile) is combined with runs and intervals
declustering methods along with DeCA declustering method, from which the threshold is
obtained as the median of the declustered values. Firstly, the threshold values of Hg are
estimated irrespective of 6. After a sensitivity analysis, the 95" percentile was used to derive
threshold values, since higher percentiles provided a smaller sample of extreme data that result
in large variance. As regards threshold values from mean excess and threshold stability plots,
the packages ‘evmix v2.11° and ‘extRemes v2.0.10° in R were used, respectively; the
corresponding graphs are provided in Figure 4-25. In Table 4-24, the threshold values of H for
each location and method are summarized. The maximum threshold values are systematically
provided by the DeCA method while the minimum ones from the mean excess. It is obvious
from the mean excess plots of all locations that the decreasing behaviour of the mean excess
function shows that the higher we go in the sample data, the lower the excess values are,
indicating a thin-tailed behaviour of the distribution.

Table 4-24. Threshold values of significant wave height by threshold selection method for
the examined locations.

Threshold selection method Aegean Sea Ligurian Sea  Otranto Str.  Sicily Str.
95™ percentile 2.32 1.62 1.24 2.47
Mean excess function 1.90 1.30 0.96 2.00
Threshold stability 2.10 1.50 1.00 2.10
DeCA 2.61 1.89 1.25 2.66
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Figure 4-25. Plots of mean excess function (left panels) and threshold stability (right
panels) for (a) Aegean Sea, (b) Ligurian Sea, (c) Otranto Str., and (d) Sicily Str.

In Table 4-25, the number of exceedances for H after implementing the declustering methods
for each threshold selection method is provided for the examined locations. These Hg
exceedances along with the corresponding values of @y, are used for fitting the directional
extreme value model described in Section 3.7. Let it be noted that for runs declustering, a run
length of 36h was chosen as the most representative for the examined locations, providing
sufficient data for the subsequent analysis. Mean excess function and intervals declustering
method provide systematically the largest number of exceedances for all locations. On the other
hand, DeCA provides the smallest one, rendering its position disadvantageous in the directional
extreme value analysis, since a sufficient number of exceedances (>20 (Hg, ©y,) pairs of
extreme values) is preferred for each 45-sector in order to obtain reliable results from the GP
distribution fit.

With the final exceedances in hand, the LR test was performed to determine the order of the
Fourier model that sufficiently describes the variability of the extreme value parameters for
each location. As shown in Table 4-26, the majority of the considered combinations of methods
for threshold selection and declustering for the examined locations concerns the first order
Fourier model apart from Ligurian Sea, where the higher order model indicates its directional
complexity. Let it be noted that the initial values for the ML approach are obtained by
estimating the parameters of the Fourier model from the independent fits by least squares
method, which implies a sufficient number of equations according to the number of the
unknown parameters (i.e. the order of the Fourier model). Thus, in order to ensure a fair
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comparison between the combinations of the abovementioned methods, when the number of
the 45-width sectors with sufficient number of exceedances (>20) was less than three (out of
eight) for the first order Fourier model, the corresponding combination of methods was omitted
from the analysis. The restriction for the second and third order models is five and seven sectors,
respectively. The results of Table 4-26 in italics denote the combinations of methods that satisfy
these two restrictions. DeCA method is not included henceforth because even for the first order
model, the sectors satisfying the above conditions was less than three.

In the estimation of parameters with the penalized ML, an additional constant w needs to be
determined. This constant is estimated based on the minimum value of mean absolute error
between the estimated parameters from the directional extreme model and the ones obtained by
the independent fits from the successive directional sectors of 45-degree width, provided
simultaneously for both extreme parameters ¢ and o,,. The obtained results are shown within
the parenthesis in Table 4-26.

In this part of the analysis, the standard directional extreme value model was also considered
(i.e. when the parameters are estimated without the consideration of the penalty term) in order
to verify the use of the penalized factor in the directional model for the estimation of the
parameters. Two examples are provided in Figure 4-26 for Ligurian Sea and Otranto Str.
locations considering different combinations of methods, a different order for the Fourier model
and different weighting constants w. The solid line corresponds to the standard directional
model (i.e. w = 0), the dashed line corresponds to the directional model, the parameters of
which were estimated using the penalized ML with the corresponding weighting constant w
(see also Table 4-26) and the circles correspond to the estimates of the parameters obtained
from independent fits with data from successive sectors (with width 45°) that are assumed to
follow a GP distribution. From this figure it is shown that the estimates obtained from the
penalized ML provide systematically better results than the standard method when compared
with the estimates derived from the fits of successive sectors, even for a small weighting
constant.

Table 4-25. Number of exceedances of significant wave height for each combination of
methods and for all locations.

;ngtsirc])akrjnetho d Dercr:gtsﬁzgng Aegean Sea  Ligurian Sea  Otranto Str.  Sicily Str.
95 percentile Runs 323 340 297 288
Intervals 671 830 782 669
Mean excess Runs 383 374 326 328
function Intervals 1234 1303 1229 1064
Threshold Runs 365 359 325 322
stability Intervals 939 991 1165 963
DeCA DeCA 197 285 308 233

Table 4-26. Order of the Fourier model and value of the weighting constant w (within

parenthesis) for each combination of methods and for all locations.

sTel?gg’fig(r)]I?netho d Deﬁ::f;%gng Aegean Sea  Ligurian Sea  Otranto Str.  Sicily Str.
n . Runs 1 (0.20) 3(0.24) 1(0.13) 1 (0.06)
95™ percentile Intervals 1(0.03) 3(0.18) 1(0.12) 1(0.01)
Mean excess Runs 1(0.31) 2 (0.42) 1(0.22) 1(0.10)
function Intervals 2 (0.09) 1(0.17) 3(0.03) 1(0.02)
Threshold Runs 1(0.17) 3(0.42) 1(0.17) 1(0.29)
stability Intervals 1(0.02) 1(0.30) 1 (0.03) 3(0.03)
DeCA DeCA 1 (0.20) 3(0.24) 1(0.13) 1 (0.20)
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Figure 4-26. Estimated parameters ¢ and o, of the directional extreme value model
obtained with the consideration of the penalty term (dashed line) and without (solid line)
for (a) Ligurian Sea, and (b) Otranto Str. Circles represent the estimates from the
independent fits of the 45-degree sectors.

From these preliminary results in the selected locations, it is evident that both the use of the
directional extreme value model and the inclusion of the penalty term in ML method are

essential for the reliable estimation of the design values of Hg and the confidence intervals.

We proceed with the estimation of the design values of Hg for 50- and 100-year return period
for the combination of methods that provide the largest sample size of exceedances, i.e. the
mean excess function for threshold selection and the intervals declustering method. In Table
4-27, the values of the estimates and the corresponding 95% confidence intervals using the
BCA bootstrap method, with number of bootstrap samples R = 2000, are given for all
locations. As was concluded Coles and Simiu (2003), bootstrapping can provide reliable and
realistic estimates for uncertainties in extreme value analysis if carefully implemented.

Figure 4-27 shows H design values with direction for the 50- and 100-year return period by
considering three different approaches; the blue solid line represents the estimates from the
proposed directional model, the green dashed line represents the estimate obtained by the GP
distribution without the consideration of the directional complexity of its parameters (omni-
directional case) and the red circles represent the estimates from the independent fits of the
eight consecutive directional sectors. In order to assure consistency between the results from
the omni-directional case and the independent fits from each directional sector, the return period
is multiplied by the number of sectors as was suggested by Forristall (2004). In this way, the
product of the probabilities obtained from each sector equals the probability of non-exceedance
from the omni-directional criterion. For all locations, the design value obtained from the
standard GP fit is lower compared to the estimates provided at the peaks of the directional
model. Moreover, the design values estimated by the sectors with the largest number of
observations are always higher than the corresponding design value obtained from the standard
GP fit. The performance of the proposed directional model is apparently satisfactory for Aegean
Sea and Otrantro Str. (Figures 4-27(a) and (b), respectively) while for the rest locations the
model has relatively large deviations from the independent fits at particular directional sectors;
see, e.g. the south-western directional sector of Figure 4-27(d). A possible explanation could
be the low order of the Fourier model; see also lower left panels of Figure 4-28(b) and (d),
where the range of the lower bounds of confidence intervals is relatively high.
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Table 4-27. Point and interval estimates of the directional model for all locations.

Parameter Aegean Sea Ligurian Sea Otranto Str. Sicily Str.
Ao -0.17 -0.07 —0.24 0.00
(—0.55, —0.06) (-0.25, -0.03) (-0.58, -0.15) (—0.40, 0.06)
A 0.10 -0.02 0.00 -0.16
(-0.28,0.18) (=0.20, 0.03) (-0.25, 0.06) (=0.79, -0.07)
Ay -0.20 0.07 0.16 —-0.02
(-0.54, -0.11) (-0.13, 0.14) (-0.35,0.28) (-0.57, 0.08)
Ai, 0.14 0.16
(-0.05,0.21) (-0.30, 0.24)
Ayy 0.06 0.15
(-0.42,0.23) (-0.25, 0.25)
Az 0.15
(-0.38, 0.28)
Ays -0.07
(-0.28,-0.02)
By 0.66 0.54 0.50 0.71
(0.36, 0.74) (0.46, 0.56) (0.26, 0.54) (0.27,0.74)
By -0.02 0.17 -0.14 0.37
(-0.27, 0.05) (0.03,0.21) (-0.31,-0.10) (0. 45, 0.44)
By, 0.35 —-0.06 -0.01 -0.09
(-0.13,0.48) (-0.18, 0.00) (-0.21, 0.06) (-0.96, -0.01)
B, -0.13 -0.01
(-0.39, -0.07) (-0.21, 0.05)
B,, 0.00 -0.14
(-0.57,0.15) (-0.27, -0.06)
Bis —0.03
(-0.23,0.03)
B 0.09
(=0.07, 0.13)

In the upper panels of Figure 4-28, the wave rose diagrams of Hg and @y, representing the
exceedances obtained from the implementation of mean excess function for threshold selection
and the intervals declustering method are presented for all locations. In the lower panels of
Figure 4-28, the 50- and 100-year Hg design values are shown along the 95% confidence
intervals estimated by the BCA method. These levels seem reasonable when considering that
the expected lifetime of wave energy converters is 2025 years on average. A general remark
concerning all locations is that the range between the Hg design value and the upper bounds is
much smaller than the corresponding range with the lower bounds. Another remarkable result
is that in two locations it is not expected to encounter extreme Hg values from the dominant
directional sector but from the next one, which may have a more limited amount of data. Since
the results of the 50- and 100-year return period are similar, the following comments can be
summarized for both return periods per location:

o For Aegean Sea, the dominant sector for extreme wave heights is the northern one,
probably attributed to the Etesian winds, which gives extreme values up to 7m at this
sector, and lower values characterizes the rest directional sectors (e.g., for the sector
[50°,310°] the Hg value is 4.3m in the mean) as regards the 50-year return period.
Furthermore, the low values of the lower bound of the 95% confidence intervals in the
north-western sector can be justified by the lack of data obtained from the
implementation of the specific combination of methods.

e For Ligurian Sea, the north-eastern sector is characterized by high values of Hg (5.4m
for the 50-year return period), even though it is the second dominant directional sector
for Hg, while the southern sector, with the least amount of extreme data, provides the
lowest values (3.6m).
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Figure 4-27. Hg design values for the 50-year return period obtained by the proposed
directional model (blue solid line), the GP distribution without the consideration of
directionality (green dashed line) and the independent fits for (a) Aegean Sea, (b) Ligurian
Sea, (c) Otranto Str., and (d) Sicily Str.

e For Otranto Str., the two dominant wave directions (in the south and south-eastern
sectors) are translated in two consecutive peaks in the Hg design value graphs while the
two concave forms (in the north-eastern and western sectors) correspond to the sectors
with the minimum amount of extreme data. Note that the form of the lower bounds differs
from the one of the Hg design value.

o For Sicily Str., the location with the most intense sea states according to the analysed
hindcast wave data, the second dominant directional sector for H (i.e., the western) is
characterised by the highest Hg design values (8.4m for the 50-year return period) and
the lowest values are observed for the south-eastern sector (5.9m for the 50-year return
period). This location presents the highest uncertainty in the estimation of the design
values; the largest difference between the lower bounds and the Hg design value is close
to 6.3m for the 50-year return period encountered in the south-western sector.
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Figure 4-28. Wave rose of Hg exceedances (upper panel) and Hg design values for 50-year
(left column) and 100-year return period (right column) with bootstrap 95% confidence
intervals for (a) Aegean Sea, (b) Ligurian Sea, (c) Otranto Str., and (d) Sicily Str.

45.3 Final comments

Estimation of design values of wave parameters by means of directional extreme value models
can be in favour of extreme value models that ignore direction in wave energy applications,
where the consideration of directionality is crucial in the design of marine structures. With the
increasing availability of long-term directional metocean data mainly from numerical models,
it is strongly advised to take advantage of directional extreme value models in optimizing the
performance and costs of marine facilities.

In this analysis, long-term wave data from four locations in the eastern Mediterranean Sea were
analysed. Three threshold selection and two declustering methods were combined to examine
the corresponding effect in the determination of the order of the Fourier model and in turn, in
the parameter estimates and design values and their uncertainties. After selecting the
appropriate threshold for each method for the identification of extreme wave heights and
applying the proposed declustering techniques due to the prerequisite of independence, a
Fourier form was used to model the parameters of the Generalized Pareto distribution as a
smooth function of wave direction. A penalised maximum likelihood was implemented to
estimate extreme parameters and ensure consistency with the directionally independent fits. In
the majority of the combinations of methods, the first order Fourier series model was found to
be adequate for the description of extreme wave heights with direction while higher order
models were necessary particularly for locations with more complex directional features, like
the location in the Ligurian Sea. Directional design values of significant wave height were
provided for the 50- and 100-year period as an objective criterion for design specification
purposes and predict reliable extreme wave conditions during the lifetime of a wave energy
facility. Confidence intervals of 95% were also provided by the bias-corrected and accelerated
bootstrap method. Finally, the present analysis may be useful in other applications related to
marine renewable energy sectors, such as the offshore wind sector, and coastal engineering
studies (e.g., coastal erosion/accretion studies due to wave action coming from multiple
directions).
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Chapter 5

Chapter 5 Studying the coastal environment under different
time scales

5.1 General

Coastal zones receive a wide range of environmental pressures coming either from natural
processes (e.g. sea-level rise, storm surges, hurricanes, etc.) or anthropogenic activities (e.g.
fisheries, oil and gas extraction, harbour facilities, tourism, etc.). Adding the increasingly
disproportional rates of coastal population density compared to the inland (Neumann et al.,
2015), there is an imperative need to manage and protect such areas, as well as human life,
effectively. Among the measures that should be taken into account is the forecast of coastal
morphological changes that are mainly driven by sediment transport gradients.

The essential properties of coastal morphodynamic processes are the interaction between
bathymetry/topography and fluid dynamics (Cowell and Thom, 1994; Dodd et al., 2003) that,
on the other hand, are responsible to a great extent for the volume displacement during sediment
transport. However, morphological changes depend on the evolutionary nature of all the
involved complex processes. Sufficient knowledge of coastal geomorphology, wind and wave
climate, and the corresponding complex interaction with sediment particles, and better
understanding of all the underlying coastal dynamics in various spatio-temporal scales render
coastal evolution more predictable.

A wide research field for the representation of coastal dynamics and morphological evolution
is based on deterministic (i.e. process-based) coastal area models, which may include both
dimensions in the horizontal plane (2DH model) based on depth-integrated quantities, a vertical
profile description added to the 2DH model (quasi-3D model) or the fully three-dimensional
equations (3D model), and the representation of the examined processes is computer-based,;
see, for example, the review of Amoudry and Souza (2011). In a relatively short time and at a
low cost, different parameters and scenarios can be applied and tested in the context of an
engineering problem but the inherent complexity of the abovementioned dynamic processes
renders the development of reliable models a rather demanding task. A lot of research has been
carried out in order to develop reliable coupling models, nesting techniques and modelling
systems that can scale down the forcing from a large scale (e.g. oceanic waters) to a local one
(e.g. coastal waters) so as to predict as accurate as possible sediment transport rates and
morphological evolution in coastal areas. Moreover, the understanding of such dynamic
mechanisms is crucial not only for the human-oriented activities in the coastal environment and
the design and stability of coastal structures but also for the quality of the water by transferring
pollutants (Gong et al., 2011) and the ecosystem sustainability of nearshore areas, since
sediment contributes to the supply and distribution of nutrients and organic materials (lkeda et
al., 2009).

Among the marine dynamic processes, the significance of winds, and hence waves, stands out
mainly due to their structuring nature on the coastal environment in terms of morphological
formation and composition. For instance, high-energy ocean events influence, among others,
erosion-accretion dynamics by affecting the sediment transport rates of a beach while changes
in wave climate (including wave direction) may also affect the sedimentary system (Adams et
al., 2011). The degree of severity from the impacts of such an event at a beach depends not only
on the characteristics of the event per se but also on the characteristics of the beach and the
sensitivity of the surrounding ecosystems. Based on the perspective of the frequency and
amplitude of waves, two common modelling approaches for the consideration of wave action
in sediment transport modelling that can be implemented are the following: the first one deals
with the action of individual high waves that collide with the shore for a short time window
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(e.g. several hours), and the second one takes into consideration the accumulative action of
waves throughout a typical year, with high-energy waves during winter and low-energy waves
during summer; see, e.g. Ferreira (2005); Callaghan et al. (2009); Karunarathna et al. (2012);
Coco et al. (2014).

The purpose of this chapter is to address the fundamental concepts of wave modelling and wave
propagation from the offshore to the coastal areas, define the main features that concern
sediment transport and discuss how the two different considerations of time affect the
equilibrium of coastal systems. Specifically, in Section 5.2 phase-averaged wave propagation
models are briefly discussed and Section 5.3 addresses some general concepts for sediment
characteristics which depend on the combined action of waves and currents. In Section 5.4, the
first case study is presented with the Varkiza bay being studied under the perspective of episodic
events that act for a short time window (hours to some days) and had direct impacts on the
coastal topography of the beach. The second case study, discussed in Section 5.5, refers to Sitia
bay, and deals with the accumulative wave action, where erosion behaviour is governed by the
interaction of storm events and calm periods.

5.2 Modelling wave propagation

Wave action is a dominant factor in the coastal zone by influencing geometry and forming the
composition of beaches through currents and sediment transport. When studying coastal
morphology, wave transformation, i.e. changes in wave characteristics during wave
propagation from the offshore to the nearshore waters, is an essential information since wave
data from in situ measurements (e.g. from moored buoys) and gridded data sets (global wave
models and satellite measurements) are available far from shore. Depending on the spatial and
temporal scales, wave evolution can be described by two basic categories of mathematical
models. The first one is the phase-resolving models that are based on mass and momentum
conservation equations for calculating detailed wave characteristics; mild-slope (Kirby and
Dalrymple, 1986) and Boussinesq models (Madsen et al., 1991) belong to this class. These
models are computationally expensive thus they are suitable for the wave propagation in
shallow waters, where the wave properties vary rapidly, and of limited spatial extent. The
second one is the phase averaged (or spectral wave) models that are based on the conservation
of the wave action density (Bretherton and Garrett, 1968; Andrews and Mcintyre, 1978) in the
presence of currents varying in space, mainly applied for areas (from global to regional spatial
scale) in deep water where wave properties vary slowly; see, e.g. Komen et al. (1994); Booij et
al. (1999).

The wave action balance equation, which is the governing equation for the latter wave models,
can be written in Cartesian co-ordinates as follows:

oN 0 S
-t a(cxN) +— (cyN) + s (CGN) +55 (cgN) =— (5.1)

where N is the wave action density, defined as the ratio of the energy density spectrum and
relative angular frequency (N = E /o), t is the time, c is the propagation velocity in the four-
dimensional space x, y (Cartesian coordinates in two horizontal directions), ¢ and 8 (direction
of wave propagation), and S is the source term of wave energy balance representing the
summation of linear and non-linear interactions. These interactions include the following
physical processes that generate, redistribute or dissipate wave energy: wave growth by wind
action, wave energy transfer due to non-linear wave-wave interaction and dissipation of wave
energy due to white-capping, bottom friction and wave breaking. The solution of Eq. (5.1)
provides wave predictions across a computational grid based on the evolution of the wave
spectrum.
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Among the most popular third generation global wave models that are extensively applied for
wave forecasting and the assessment of wave resources in a large spatial scale are the
Simulating Waves Nearshore (SWAN) model, developed at the Delft University of Technology
(Holthuijsen et al., 1993), Wave Action Model (WAM) model, developed by the WAMDI
Group (Group, 1988), WAVEWATCH Il (Tolman, 1997) based on WAM model, and MIKE
21 SW of the MIKE 21 suite, developed by the Danish Hydraulics Institute (DHI) International
(DHI, 2016).

5.3 Sediment transport: concepts and characteristics

As waves approach the shoreline into shallow water depths, their properties, e.g. wavelength,
wave height, period and direction of propagation, are modified significantly and are
redistributed due to the varying bathymetry. In particular, within the coastal environment, a part
of the wave energy is responsible for the agitation and movement of the bed material (e.g. wave
breaking) while wave-induced currents are usually the dominant factor for its transport. For
example, relevant studies for the estimation of bed load due to the wave action solely or the
combination of waves and currents can be found in Hallermeier (1982); Williams and Rose
(2001); Nielsen and Callaghan (2003); Soulsby and Damgaard (2005); Jiang et al. (2015). Due
to the continuous response of the sediments to the wave action and currents, the shoreline in
turn responds to these physical processes influencing the dynamic equilibrium of the beach;
depending also on the seabed and beach material, beach morphology, coastal profile and supply
of sediment, the shoreline may be eroded, accreted or stay in equilibrium state.

Generally, sediment transport is divided into two classes:

¢ longshore transport due to oblique breaking waves generated by longshore currents that
moves the sediment parallel to the shore, and;

e cross-shore transport that leads to the onshore or offshore net transport of sediment
perpendicular to the shore.

The accurate prediction of seabed level change relies on the accurate estimation of coastal
sediment transport since gradients in the sediment transport rates lead to seabed topography
changes due to erosion/accretion.

5.3.1 Characteristics of sediment transport

Focusing on the non-cohesive granular sediments in this thesis, the size of the grain is the most
important factor for its classification, which can be expressed through statistics (e.g. mean
value, standard deviation, skewness, kurtosis) derived from the sand size distribution
concerning a particular sand sample or from the measured settling velocity, usually extracted
directly from laboratory measurements. For instance, the median particle diameter ds, is a
representative measure for sand samples, for which half of the sample contains finer particles
compared to the other half with coarser ones. The Wentworth scale is the most popular
classification of sediment grain by size based on powers of two (Wentworth, 1922), where sand
ranges from 0.0625 mm to 2 mm. At this scale, there is also finer-grained sediments referred to
as silt and clay, and coarser-grained sediments referred to as gravel (e.g. boulder, pebble).
Additional properties include sorting (grading) and shape of grain. The factors that determine
the size of sediments are: i) wave energy conditions; ii) sediment sources, and; iii) offshore
slope.

In both horizontal and vertical directions of a seabed, characteristics of sediment can vary

significantly primarily due to the action of waves and currents. For instance, in the horizontal
direction and under high wave conditions, coarse sands are encountered in shallow waters as
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finer sediments are deposited in areas with less turbulence (e.g. deep waters) while in the
vertical direction, coarse sediments may cover finer ones during intense storm events. Apart
from the spatial variations, temporal variations (seasonally or over longer timescales) can also
occur.

Note that except for the hydrodynamic/wave conditions of an area and the grain diameter, the
pattern of sediment transport is also influenced by the characteristics of the transported material,
usually defined by grain (relative and bulk) density, porosity, fall velocity, etc.

The sediment load in a coastal area can be transported in various ways depending on the bed
shear velocity. The most commonly modelled ones are:

o bed load transport gz, where the value of bed shear velocity exceeds the critical value for
initiation of movement and the sediment particles are almost continuously in contact with
the bed during transport, and,;

o suspended load transport g, where the value of bed shear velocity exceeds the fall velocity
of the particles leading to the lift and suspension of the grains outside the close vicinity of
the bed due to the upward impulses carried by turbulent eddies.

The accurate estimation of coastal sediment transport is not a trivial task due to the complexity
of the environment and the interdependence of numerous coastal processes in sediment
dynamics. In the relevant literature, there is a plethora of theories, assumptions and methods
proposed for the study of sediment transport from empirical formulas, which are the most
commonly implemented in modelling studies, to more sophisticated experimental techniques.
Sediment can be transported under the action of currents, waves and their combination and its
movement can be investigated by Lagrangian and Eulerian models; the sediment transport
numerical model used in this thesis is based on the latter model. The most controlling factor for
the erosion/deposition patterns is the bed shear stress; the total sediment transport, in turn,
affects the bathymetry evolution, which results in changes in the current and wave fields. Thus,
due to the numerous chain-dependent physical processes involved in sediment dynamics, all
these models must be coupled.

5.3.2 Threshold of movement

The sediment movement is dependent on the equilibrium of forces, horizontal and vertical,
coming from the water motion, neighbouring grains and hydrodynamic sub-pressure that acts
on the surface of the sediments. When the instantaneous fluid forces are just greater than the
resisting forces on a particle then this phenomenon is called threshold of sediment motion or
sediment incipient motion. In order to predict sediment transport rates and morphological
changes at a coastal location, the first step is to predict this threshold.

Both theoretical and experimental studies have been performed for the incipient motion of non-
cohesive sediments. The Shields parameter 6 is a non-dimensional number widely used as a
criterion for the initiation of movement of sediment when the critical bed shear stress of the
sediment is exceeded by the shear stress induced by the flow (Shields, 1936). The critical
Shields parameter is defined by

Ter

~ 9(ps — p)dsy’ (62)

ch

where 7, is the critical value of the bed shear stress, p; is the density of the sediments and p is
the corresponding one for the fluid, and ds, is the median size of the sediment particle. This
stress can be caused either by currents, waves or their combined action.
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In case of pure current, the bed shear stress is calculated using simple drag coefficient
expressions, which rely either on constant drag coefficients or a logarithmic velocity profile.
The latter approach has a greater advantage over the former when morphological changes are
considered due to the dependence on the vertical distance from the bed. For a given location at
height z above the boundary, the velocity is given by

u(z) = u—K*ln (i) (5.3)

A

where u, = /1,./p is the friction velocity (7, is the current-produced shear stress and p is
the fluid density), x is the von Karman (typically equals to 0.41) constant and z, is the bed
roughness length.

Under the action of pure waves, the critical conditions for sediment motion are expressed
through the critical bed shear stress by introducing the concept a friction factor as follows

Tpw = 0.50f U, (5.4)

where u,,, is the bottom (or near-bed) wave orbital velocity. The wave friction factor f,,
depends on the flow regime (e.g. smooth, turbulent), which in turn depends on the wave
Reynolds number R,, and the relative roughness r = a/k, (a is the wave orbital amplitude
and k,, is the Nikuradse's bed roughness parameter) of the seabed. Among the variety of
formulations that exists for approximating f,,, the most commonly used explicit expressions
have been proposed by Swart (1974); Kamphuis (1975); Nielsen (1992).

The representation of bed shear stress developed under the combined action of waves and
currents is more complex due to their non-linear interactions. In this case, usually both mean
and maximum combined bed shear stresses need to be determined. Several approaches for the
parameterization of wave-current interactions have been proposed; see the review of the state-
of-the-art knowledge of sediment transport caused by waves and currents by Lu et al. (2015).

5.4 Case study 1: Modelling nearshore hydrodynamics and circulation
under the impact of high waves at a coastal area

5.4.1 Motivation

The main motivation of this application is to study the effects of high waves on hydrodynamics
and circulation on a sandy beach and, in turn, give insight into their impact on sediment
transport processes. Because of the abundance of the available in situ measurements, Varkiza
coast, in the Saronic Gulf (western Aegean Sea), has been selected as a suitable area for
modelling the hydrodynamic and meteorological conditions and estimating sediment transport
rates during and after intense sea states/storms by using a quasi-3D sediment transport model
based on finite volume method. Specifically, Varkiza coast, located in the homonym bay, forms
a part of the north-eastern Saronic Gulf, a semi-enclosed embayment in the south-western
Aegean Sea; see Figure 5-1. It is limited in width and length (around 900 m), while at the east
side of the coast there is a flume mouth that follows dry/wet epochs. Furthermore, the U-shape
and south orientation of the examined coast confine wave action, which is the primary factor
for the settlement of sediments. Erosion phenomena are evident due to both the intensive
onshore development and physical conditions. The main reasons for choosing the particular
coast, apart from the recreational and economic activities that it hosts, refer to the availability
of the following features:

[ ]
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Figure 5-1. Aerial map of the Saronic Gulf along with the locations of the in situ devices
(left map), and the study area of the coast of Varkiza (right map) from Google Earth.

e in situ measurements as regards the wave parameters from two different data sources; an
oceanographic buoy at an offshore location and an acoustic wave and current (AWAC)
profiler at the entrance of the bay (see also Figure 5-1);

o adetailed bathymetry up to 25 m water depth inside Varkiza Bay, which was partially based
on seabed mapping;

e cross-shore sections along the beach, on which seabed level was measured after intense sea
states completing an annual cycle, as well as grain size of sediments (Foteinis, 2014;
Skanavis, 2013), and;

o the touristic character of the area, along with the intense socio-economic activities along the
beach mainly during summer months, that renders the understanding and prediction of
sediment transport phenomenon a critical task.

The results from this analysis have been published in:

Belibassakis, K., Karathanasi, F., 2017. Modelling nearshore hydrodynamics and
circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf.
Oceanologia 59(3): 350-36.

5.4.2 Wind and wave climatology

As regards wind and wave climatology, the analysis was based on a 9-year dataset from an
oceanographic buoy that was taken into consideration as a representative location for the
examined area. This buoy, deployed at the southern part of the Saronikos Gulf (37.588N—
23.558E, water depth ~200 m) belongs to the POSEIDON marine monitoring network that
operates under the responsibility of the Hellenic Centre for Marine Research (HCMR) since
2000 (Soukissian et al., 1999). The wind measurements, with reference height 3 m above sea
surface, have a 3-h recording interval with 1 Hz sampling frequency (averaged over a 600-
second recording period), while the wave measurements have a 3-h recording interval with
1024 s for the sampling period of the free surface. The time series of wind speed and significant
wave height is between 08/2007 and 05/2015.

In Figure 5-2(a) and (b), the rose charts of wind speed and significant wave height are presented,
respectively, along with the corresponding frequencies of occurrence. From the former figure,
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it is illustrated that winds are blowing mainly from the north (sector [337.5°,22.5°]) while, at
the same sector, high values of wind speed are also present with the maximum one reaching
values up to 17.3 m/s. On the other hand, for the latter figure, the prevailing wave directions
(sectors [0°,67.5°] and [135°,157.5°]) correspond to the less frequent wind directions. Large
fetches are evident from the eastern side of the location of the buoy (around 65 km) while in
the north and south directions, wave fetch is smaller (15 km on the average). Waves propagating
from the west have very low frequency of occurrence, which is reflected also by the very small
fetch. Low values of significant wave height (up to 0.5 m) have very high frequency of
occurrence (4-5%) coming from the east, while waves characterized with the highest values of
the same parameter (up to 3.1 m) propagate from the south-east, attributed to the very large
fetch (115 km). Furthermore, note that the scattering of wind directions is broader compared to
the wave directions.

As regards water circulation, in Kontoyiannis (2010) direct current observations were analysed
at three different time periods and it was concluded that the seasonal flows at the north-eastern
part of the Gulf have a northward meandering when north-western, western and southern winds
are blowing. Furthermore, the circulation pattern is characterized by a two-layer structure
(cyclonic in the upper layer and anticyclonic in the lower layer) from late spring to summer to
late fall. In the same work, the time series of current velocity for a 3-month period (11/2003—
01/2004) indicated that the currents are in the mean rather weak.

Wind rose diagram at buoy location (2007-2015) ‘Wave rose diagram at buoy location (2007-2015)
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Figure 5-2. Rose diagram of (a) wind speed and wind direction, and (b) significant wave
height and wave direction at the buoy location for the period 2007—2015.

5.4.3 Model domain and bathymetric data

In order to manage the computational domain and economize on computation time, the model
domain was sectioned into six nested rectangles, going gradually from the outer area (i.e. level
1) up to the entrance of Varkiza Bay (i.e. level 6); see also Figure 5-3(b) for the representation
of the different levels. The outer area covers a surface of 45 km x 76 km and the area of Varkiza
Bay equals to 2 km x 2.5 km.

In order to determine the variability of flow characteristics in space, model grid resolution is a
key factor that affects the quality of the obtained results. The provision of flexible mesh in
MIKE21 results to a more accurate representation of the area under study, with the choice of
finer mesh elements at local areas of special interest. In this study, various mesh areas were
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applied to discretise the water surface, with small triangular elements representing areas where
the accuracy in the calculations was important. The final mesh area of the examined area is
presented in Figure 5-3(b). The bathymetric information that is necessary for constructing the
mesh area for the entire area was obtained by the Hellenic Navy Hydrographic Service (HNHS)
from maps of different spatial scales. The bathymetric grid data for the last level (of a 5-m
spatial resolution) was obtained by combining a high-resolution map from the HNHS and field
measurements provided by the HCMR. In Figure 5-3(a), the 2D bathymetric representation of
the examined area is displayed in Google Earth; the deepest water depth is close to 800 m at
the south-eastern boundary of the study area.

5.4.4 Input data

The period of the simulation, extending from January 3 to February 19, 2013, was selected so
as to include a sequence of extreme events with significant wave heights higher than 2.5 m that
were recorded at the entrance of the bay during this period. Furthermore, bathymetry resolution
(including flexible mesh) and time step for computations of the HD and SW results are key
parameters for the purpose of this study. As concerns the mesh, it becomes progressively finer
as we move from level 1 to level 6, which is the local domain at the coastal site of VVarkiza. The
total number of elements in the whole domain is 12,176, the corresponding number of elements
in level 6 is 1600, and the time step is set to 47 = 1800 s. The latter are found to be enough for
numerical convergence of the results concerning the wave quantities that are presented in more
detail below. Specifically, numerical investigation shows that the calculated results do not
change more than 5% with further enhancement of the mesh at the different subdomains and
reduction of the time step.

m)
4200000

4195000
Level 6

istond \ / Level 5

4185000
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4180000
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Figure 5-3. (a) The model domain showing the bathymetry of the examined area and (b) the
mesh grid for the adopted levels.
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The necessary input data for the HD module include the following parameters: wind forcing,
radiation stress fields, boundary conditions, atmospheric pressure, bed resistance and eddy
viscosity. Eddy viscosity was obtained in the domain from the Smagorinsky formulation with
a constant coefficient (equal to 0.28), bed resistance (defined by the Manning number) was only
varying at level 6 (with values between 10 and 32 m'?/s), where sediment transport rate is of
interest, while salinity and temperature were constant during the simulation (barotropic mode).
Regarding boundary conditions, normal fluxes were forced to zero for all variables along both
closed and open boundaries, assuming full slip boundary conditions, since all boundaries are
far from the area of interest and tidal heights are rather small and do not impact the simulation
results. Let us note that tidal heights, predicted from the Global Tide Model Data, were also
used as an alternative input for the open boundaries; however, the simulation results were
similar to the ones presented in this work.

The effect of the wind forcing on the flow field is included by considering wind speed and wind
direction; in this way, wind shear stress is calculated on the water surface. For the numerical
simulations, these two variables were considered to be varying in time but constant in domain.
Wind speed and direction were obtained by the results of the POSEIDON I1 weather forecasting
system (Korres et al., 2010) that has been developed in the framework of the POSEIDON-II
project® (2005-2008).

As regards the SW module, the corresponding conditions at the offshore (south) open boundary
were varying in space (along the wave generation line) and time. The corresponding input was
based on the WAM Cycle-4 code, a third generation wave model, which computes spectra of
random short-crested wind-generated waves. The spatial resolution is 1/30° x 1/30° (~3 km)
resolving the wave spectrum at each grid point in 24 directional and 30 frequency bins. The
wave parameters that were obtained are the significant wave height H,, , the peak wave period
Tp, the mean wave direction 6,,,,. and directional spreading n. The zero upcrossing period T,,
obtained from the WAM model, was converted to the peak wave period Tp, by using the
following approximate relation (DNV, 2011):

2 = 0.6673 + 0.05037y — 0.006230y2 + 0.0003341y>, (5.5)

P

where y is the peak enhancement factor of the spectrum. Assuming a JONSWAP spectrum with
y = 3.3, Eq.(5.5) results in Tp = 1.2859T,.

Other key parameters or coefficients for setting SW module are:

e energy transfer, where quadruplet-wave interaction was considered;

e wave breaking was included by specifying the gamma parameter y,,;, (constant in domain,
equal to 0.8);

¢ bottom friction, specified by the Nikurdase roughness k, (constant in domain, equal to 0.04
m);

e white capping, specified by the two dissipation coefficients (constant in domain) Cy;s, which
controls the overall dissipation rate (set to 4.0), and DELT A,;s, which controls the weight
of the dissipation in the energy spectrum (set to 1.0).

Both wind and wave data were derived from the POSEIDON Live Access Server (LAS,
http://poseidon.hcmr.gr/listview.php?id=17), which is a gateway to archived model results,
dating from December 1, 2012 to June 30, 2013 with a 6-h time resolution for both datasets.
Missing data were filled in by linear interpolation to allow the execution of the simulation;
however, interpretation of the simulation results during these time periods should be avoided.

8 The POSEIDON-II weather forecasting system is operational since December 2007 and is applied on a
horizontal resolution of 1/20° x 1/20° (~5 km) over the domain covering the whole Mediterranean and
Black Sea regions and the surrounding countries.

135



Case study 1: Modelling nearshore hydrodynamics and circulation under the impact of high
waves at a coastal area

Finally, regarding the setting up of the ST module, the transport tables have a key role; these
tables are built based on all possible combinations according to the specified intervals of the
involved parameters (i.e. the root-mean square wave height, peak period, current speed, wave
height-to-water depth ratio, angle between current and waves, median grain diameter d,, and

sediment grading). Additional parameters that are important for this module are forcing from
the wave and current action, provided by the HD and SW simulations (see below Figure 5-4
and Figure 5-5, respectively), sediment properties, time step factor (set to 5, i.e. estimation of
seabed level and sediment transport every 5™ HD time step) and settings for the morphological
changes and boundary conditions of the area of interest. In particular, based on measured data,
the spatial distribution of the grain diameter of the sediment (ds,) over the coastal zone of
Varkiza Bay was set to 2 mm for water depths greater than 20 m (where no significant sediment
transport is expected). Moreover, in depths less than 3 m there is a gradual increase of d50 from
0.1 mm to 0.4 mm in the S-N direction (moving towards the shoreline), and a variation from
0.35 mm to 0.45 mm in the E-W direction on the shore. Sediment grading was kept constant
(equal to 1.45) for the same level.

5.4.5 Model calibration and validation

Model calibration is necessary in order to adjust and improve the agreement between the results
of the model simulations and a chosen set of benchmarks (Trucano et al., 2006); in this study,
benchmark is a data set obtained by in situ measuring devices, which are considered to be the
most accurate data sources. On the other hand, validation is the process of verifying that the
predictions from the model are consistent with the examined physical events after calibrating
the involved parameters or coefficients. Let us note that the data used for the validation should
be different from the data used during the calibration phase.

There are numerous parameters and coefficients that should be set so that the model predicts
reasonable results; for instance, in the case of the SW model, the parameters that influence the
model results regarding the fully spectral formulation and should be adjusted are Cy4;s and
DELT Ay, dissipation coefficients, gamma and alpha parameters of wave breaking and bottom
roughness.

The wave parameters that were used to validate the model were the significant wave height, the
zero-crossing wave period and the mean wave direction at the locations where in situ
measurements were available; two different sources of such measurements were accessible, an
AWAC profiler at the entrance of the examined bay and an oceanographic buoy at an offshore
location. The latter data source was used to calibrate the wave data input at the offshore
boundary of the model domain, where wave data from the WAM model were available, by
applying the calibration methods described in Section 2.4.4. Let us remark that in the calibration
procedure, more emphasis is given to the significant wave height, since highest waves are
expected to have major contribution to the movement of sediments during storm events. For the
model assessment, the following statistical measures were applied: RMSE and MAE were used
for the linear variables (i.e. significant wave height and wave period) and MCAE and RME for
the directional ones (i.e. wave direction); for the corresponding definitions, see Appendix B.4.
The validations against both sources of in situ measurements showed that there is a good
agreement as regards significant wave height and mean wave direction, but wave period
exhibits a less accurate performance.

5.4.6 Simulation results
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The following results represent the current and wave characteristics and bottom morphology of
the examined area for the “extreme” event that occurred on January 18, 2013. The time series
of wind speed, wind direction and significant wave height used as input at the offshore boundary
are presented. It is evident that southern winds generate the highest values of significant wave
height during the simulation period. Moreover, wave height variation is found to be in good
agreement with wind speed data, denoting that the waves at this location are mostly wind
generated.

HD results

The spatial distribution of current speed and the corresponding direction for the entire area and
the coast of interest is depicted in Figure 5-4 during a specific extreme event (on January 18,
2013) that was characterized mainly by south wind and wave directions. The model domain is
characterized by low current speeds, of the order of 0.2 m/s. As regards Varkiza Bay, highest
values of current speed are observed; locally (at the east side of the bay) current speed reach
values up to 0.9 m/s, which is an extreme value encountered very locally during the peak of the
storm. The latter high values may be also attributed to the wave direction and the orientation of
the coastline. Moreover, in Figure 5-4(b) a counter-clockwise current circulation is evident
during this extreme event due to the concave and curvilinear shoreline structure of Varkiza
coast and the relatively deep water depths that enhance penetration of waves and currents from
easterly sectors. The combination of the above factors produces offshore currents near the
western part of the study area. From the analysis, it seems that tidal currents might be of
secondary importance in the context of coastal erosion.

SW results

In Figure 5-5, the spatial distribution of the significant wave height and mean wave direction is
presented over the model domain. The analysis of the results shows that the significant wave
height is reduced as the waves propagate towards the shallower water depths of Varkiza beach;
see also Figure 5-5(b). Near the coast the wave height is lower than 2 m with a mean wave
period around 7 s (not shown here).
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Figure 5-4. Spatial distribution of (a) current speed and current direction for the entire
model domain and (b) for Varkiza bay at a specific time step of the simulation.
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Figure 5-5. Spatial distribution of (a) significant wave height for the entire model domain
and (b) for Varkiza bay at a specific time step of the simulation.

ST results

In Figure 5-6(a), the spatial distribution of the seabed level change at the specific time step is
presented. Based on the simulation results, negative seabed level changes (up to -0.3 m) are
observed along the coastline of the examined beach, while off the coast of Varkiza the
corresponding seabed level changes are relatively smaller. Positive seabed level changes are
depicted mainly along the east side of Varkiza Bay that may be attributed to the high values of
current speed.

In Figure 5-6(b), the total load of sand transport is presented, along with the corresponding
direction, for the examined extreme event. The highest values of sand transport (up to 0.00098
m3/(s m)) are depicted mainly at the 4-m isobath at the central and eastern side of the beach,
denoting erosion trend at a larger spatial scale compared to the west side. In the western part of
the beach, at a zone of 150 m width from the coastline, accretion patterns are encountered while
the rest zone is characterized by erosion. The same behaviour was revealed and discussed in
the study of Skanavis (2013), where cross-shore profiles were obtained from a topographical
survey by using RTK-GPS, and six sections (section A to F going from east to west,
respectively) were presented along Varkiza beach before and after extreme events. In this work,
three out of six cross-shore profiles, shown in Figure 5-7(a), are examined with reference to the
period from January 5 to February 18, 2013.

In Figure 5-7, the seabed level change at the cross-shore sections (A, C, E) between the two
examined dates (close to the beginning and end of the simulation period) is plotted, along with
the initial section bathymetry. The changes calculated by the model are shown by using solid
lines and the measured data by using symbols. It is revealed that at all the examined sections
there is a clear erosional trend alongshore apart from the field measurements at section E, where
accretion is observed for a distance approximately 15 m from the shoreline.
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(a) (b)

Figure 5-6. Spatial distribution of (a) seabed level change and (b) total magnitude of
sediment transport for Varkiza bay at a specific time step of the simulation.

5.4.7 Discussion

Over the last 50 years, the human activities taken place in Varkiza, such as the construction of
a high-traffic coastal avenue parallel to the beach at a distance about 180 m, and marine
structures for mooring small boats and the needs of the local fishery community at the west side
of the coast, have disturbed gradually the natural equilibrium between coastal hydrodynamics
and sediment transport processes, and coastal configuration as well.

Based on the main findings of this study and the overview of the hydrodynamic conditions and
wave climate of the beach, coastal protection measures and mitigation methods for coastal
erosion at the examined area can be roughly suggested. As was stated by Bergillos et al. (2017),
sustainable and economical interventions are preferred for coastal erosion problems; such
countermeasures include, among others, beach nourishment (or beach fill), artificial reefs and
coral transplantation known as soft engineering methods while breakwaters and other
engineering structures belong to the hard engineering measures (Luo et al., 2016). The
implementation of the former measures is also enhanced by the topography of Varkiza beach,
since pocket beaches suffer less from lateral volumetric losses compared to open and extensive
sandy beaches.

Whichever countermeasures will be adopted by the collaboration of coastal managers,
scientists, decision makers and local authorities for the sustainable development and effective
management of this coastal zone, previous extended video monitoring of the beach conditions,
including periodically updated bathymetric data, is suggested. Furthermore, advanced local-
scale shoreline evolution models, as e.g. UNIBEST
(https://www.deltares.nl/en/software/unibest-cl/#8),  requiring  quite  more  detailed
sedimentological information, allow for precise quantification of the sediment transport rates
close to the shoreline.
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Figure 5-7. (a) Locations of cross-shore sections at Varkiza beach (from Google Earth)
and (b) seabed level differences along the cross-shore sections A, C, E between January 5
and February 18, 2013 obtained from the model simulation and field data.

5.5 Case study 2: Sediment transport simulation based on the influence of
cumulative wave action at a sandy beach

5.,5.1 Motivation

In order to reduce computational time that is required for simulations of morphological models
with time period of one year or greater, but retaining an acceptable accuracy of the predictions,
wave input reduction methods have been suggested. The core idea of these techniques is to
reduce the size of the wave input data at a coastal area of interest with some sets of
representative wave conditions based on specific criteria.
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In this section, a cost-effective method is introduced based on the use of process-based models
combined with the philosophy of wave input reduction techniques. The proposed technique
relies wave input reduction on a grain motion initiation criterion in terms of orbital velocity,
from which two basic categories are separated: (i) the one dealing with wave conditions that
contribute to the wave-induced initiation of sediment movement at depths around the closure
depth, and (ii) the other one including the low energetic wave conditions. Other reference works
as regards the onset of sediment motion under waves are those of Hallermeier (1980); Soulsby
(1997); Van Rijn (1993). Consequently, the computational efficiency of estimating seabed level
can be drastically increased with the proposed methodology instead of using the full wave time
series, while the accuracy level can be retained into acceptable limits.

As an application the coast of Sitia, in the eastern part of Crete Isl., is examined as a specific
case study. The main reasons for selecting this particular coast lie in its vulnerability to erosion
phenomena and its touristic character. In Foteinis and Synolakis (2015), the mean coastal retreat
rate at Sitia was estimated at 0.32 m/yr, among the highest erosion rates in Crete, utilizing aerial
photographs (1960-2004), satellite images (2003-2012) and field survey measurements (2009—
2012). In 2016, the collapse of the retaining wall of the coastal road brought the erosion matter
to a climax leaving some villages in the north-eastern part inaccessible until the end of repair
works. However, from Google Earth images, it seems that in 2017 there was a widening along
the beach, which can be attributed to natural processes since no beach nourishment took place.
Additionally, the touristic activities in the wider area have become more intensive the last years
rendering confronting, prediction and management of erosion even more imperative. A
preliminary study as regards the sediment transport patterns under two alternative wave
scenarios (i.e. mean sea state, harsh wave conditions that contribute to initiation of sediment
motion) and three different topographies of the seabed (i.e. current state, two submerged
breakwaters at the isobaths of 5 m, port extension in the sea) has been conducted by the same
authors at the same study area (Karathanasi et al., 2017). One of the main conclusions of this
study as regards the harsh wave conditions for all the examined seabed topographies was the
clockwise current circulation that contributed to the sediment movement westward.

The results from this analysis have been published in:

Karathanasi, F., Belibassakis, K., 2019. A cost-effective method for estimating long-term
effects of waves on beach erosion with application to Sitia bay, Crete. Oceanologia 61(2):
276-290.

5.5.2 Methodology

When a long-term time series of wave data is available near-shore, the core of the proposed
methodology is based on the rationale of wave input reduction. The wave conditions that
contribute to the onset of sediment motion below the closure depth of a sandy seabed level,
called hereafter “over-critical wave conditions”, form the determinative factor of this analysis.
With the term “closure depth” is defined the transition zone in which the influence of waves on
bed stresses, and hence sediment transport, is significantly lower than within the region of wave
breaking (i.e. surf zone) or the region where the effects of wave energy dissipation are dominant
(i.e. upper shoreface zone) (Ortiz and Ashton, 2016). Hence the underlying assumption as
regards closure depth is its dependence on the harsh wave conditions. In this context, it is
possible to significantly reduce computation times and speed up the whole analysis. The
proposed approach uses the wave statistical parameters such as significant wave height Hs and
peak period Tp, along with some basic hydrodynamic parameters (e.g. wave height, sea water
density) and sediment characteristics (e.g. dsg, density of sediment), to estimate bottom orbital
velocity u;, and wave shear velocity u,,,, rendering the methodology fully applicable and
handy, since in the majority of the cases such summary data are available (e.g. wave model
outputs, archived wave data).
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Before proceeding with the description of the methodology, for the sake of simplicity, let us
first provide the appropriate definitions regarding the points used in the analysis that are
mentioned in the subsequent sections:

¢ the offshore points that correspond to the available wave time series, forming the input for
the boundary of the outer model domain with the coarse spatial resolution, are denoted by
Pout;

¢ the points that are used as input for the boundaries of the inner model domain with the fine
spatial resolution, obtained after applying a wave transformation scheme, are denoted by
Pinn, and the middle point of the northern boundary is denoted by Pinn,m;

o the point that represents the closure depth is denoted by P4, and the corresponding depth heg
is defined by the Hallermeier (1981) equation given by:

2

HZ
heg = 2.28Hog — 68.5( eff), (5.6)
9T

where H.g is the effective wave height, exceeded 12 h in a single year (i.e. the greatest 0.137%
waves during a year) and T is the associated wave period.

Description of the cost-effective method

According to linear wave theory, the bottom (or near-bed) orbital velocity of a monochromatic
wave is related to water depth and surface wave conditions as follows:

nmH

“> = Tsinh(kh) (6.7)
where H is the wave height, T is the wave period and k = 2w /A is the wavenumber (1 is the
wavelength) and h is the water depth. Eq. (5.7) is extended for multichromatic waves in the
coastal environment by applying it for all frequencies of the wave spectrum corresponding to
each sea state and summing the components. Thus, a representative bottom orbital velocity u,
is calculated; see, e.g. Madsen (1994). Following the method suggested by Wiberg and
Sherwood (2008) a generic form of the wave spectrum is used to estimate bottom orbital
velocity from the values of H, and T, of the reference wave data (i.e. the entire time series of
the available wave data) at a point that represents the closure depth, denoted by Pcq. Among the
commonly used wind-generated wave spectra, JONSWAP spectrum (Hasselmann et al., 1973)
is adopted

Hs\* wp 5/w\*
_ _- $(w/wp) 5.8
Sp(@) (4) s &P 4(wp) 4 ' (5.8)

where wp = 2m/Tp is the peak angular frequency, B = 3.29, y =3.3 and ¢(w/wp) =
exp[—0.5872%(w/wp — 1)?] with = 0.07 for w < wp and B = 0.09 for w > wp.

The representative orbital velocity v, is then calculated from the following relation

Upy = \/ 2 (Z su,l-Awi), (5.9)

4m?

with Su,i = msn,i.
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For the sediment transport purposes, another important property of waves is the bed shear stress
Tpw that can be associated with u;, and a wave friction factor f,, by Eq. (5.4). In this study, the
friction factor is calculated by the following empirical relationship

( o \-025 p
0.04 (L £
J (kN> C Ry 0
fw =

a \—0.75 a
L0.4 (E) - < 50,

(5.10)

where a = 0.5H/sinh(kh) is the wave orbital amplitude and ky is the Nikuradse's bed
roughness parameter equal to 2.5dx,.

Wave shear velocity u,,, is defined as follows:

Thw
Upy = |—. (5.11)
v / Pw

The dimensionless bed shear stress, i.e. the Shields parameter 8*, defined as:

0" = Yo (5.12)
(s —Dgdso’ .
with u2, = 0.5f,,u?,, (where maximum orbital velocity is calculated using the significant
wave height), s = pg/p,, denoting the ratio between the density of bed material and sea water
(p, is the density of the sediment) and g denoting the acceleration caused by gravity (9.81 m/s?),
is used to indicate the lower threshold value for initiation of sediment motion for the cases that

6" > 6., where 8., = 0.045 isthe critical bed shear stress.

Based on the above threshold value of initiation of sediment movement, the proposed
methodology can be applied on the available wave time series at Pcq in order to indicate the
specific timesteps that represent these wave conditions yielding a value of 8* higher than 0.045
(i.e. over-critical wave conditions). Let us note that in case the available wave time series is
available at an offshore location, like Poy points, a wave transformation process should be
necessarily implemented in order to obtain the corresponding time series at the closure depth.
Having these over-critical wave conditions at P¢s to hand, the corresponding conditions at the
boundary of the inner model need to be extracted, represented by Pinm. Since the temporal
resolution of the wave time series is 1 hour and given the distance between the offshore
boundary (of the inner model) and Py (~1.6 km), the over-critical wave conditions at the
boundary of the inner model that contribute to the initiation of sediment motion are identified
based on the same timestep that gives each over-critical wave condition at Pca. Then, these over-
critical conditions are classified at Pinm into specific intervals of Hg and Tp (0.5 m and 1 s,
respectively) with equidistant binning (i.e. constant bin-size) and the corresponding mean wave
direction um is calculated for each class. This schematization (into (Hg, Tp, 6,,) triplets) is
essential in order to proceed with the proposed methodology described in detail in the remaining
part of this section.

Apart from the over-critical wave conditions, in which the morphological changes are large, the
conditions where wave-induced currents are dominant should be additionally considered for a
more realistic long-term behaviour of seabed level. Assuming that waves below 0.5 m at the
boundary of the inner model do not produce significant erosion/accretion patterns in the shore,
the calm wave climate, called hereafter “sub-critical wave conditions”, is grossly classified for
values of Hg smaller than the threshold values and higher than 0.5 m. In this case, the intervals
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for Hg remain 0.5 m and for Tp the interval is varying (from 1 s to 4 s). The corresponding mean
wave directions 8,,, for the selected pairs (Hs, Tp) is also calculated.

The final triplets of both the over- and sub-critical wave conditions comprise the input for
MIKE 21 Coupled Model Flexible Mesh (called hereafter MIKE21 CFM) simulations, which
is the process-based model used in this work; see also Sections 5.5.4 and 5.5.5. From these
simulations the rate of seabed level change g is extracted for a 2-week simulation period with
1-hour timestep. This time period allows a detailed sediment response for the specific triplets
and a more accurate estimation of a mean rate q. Let us note that the rates estimated for the
over- and sub-critical wave conditions are appropriately weighted based on the frequency of
occurrence of each selected class.

After the schematization of the over- and sub-critical wave conditions, from the simulation
results, the rate of seabed level change is estimated based on the sediment continuity equation.
The mean rate of seabed level change g [m/day] for each triplet is calculated by

leq.
g=21=21 5.13
1= "7 (6.13)

where n is the total number of timesteps during the 2-week simulation period. The rate of the
first timestep q, is considered as an initialization rate of the simulations and for this reason, it
is excluded from Eq. (5.13).

For the proposed methodology, the seabed level is estimated by
h(Gt) =h(t—-1)+4q,j=1,..,n, (5.14)
at the t —th 1-hour interval for each (Hs, Tp, 6,,,) triplet.

Based on the above mentioned description and definitions, the frame of the cost-effective
methodology is presented in Figure 5-8. Recapitulating the steps that should be followed for
implementing the proposed methodology, the following key-aspects should be addressed:

1. Obtain wave time series at Pinn points and P, if wave data are only available offshore;

2. Calculate bottom orbital velocity, wave shear velocity and bed shear stress at Pcg;

3. If8* > 8., at P, then identify the corresponding values of Hg and T, at Pcq. Based on the
timestep of each pair, extract the corresponding over-critical values of (Hs, Tp) at Pinn.m.
Then, group these pairs and calculate mean value of 8,, for each class;

4. If 8" < 6., at P, then identify these values of Hg that are both higher than 0.5 m and
different from the over-critical values (from step 3) along with the corresponding values
of Tp. Then, group these pairs and calculate mean value of 6,,, for each class;

5. Calculate the rates of seabed level change with MIKE21 CFM for both over- and sub-
critical values for each (Hg, Tp, 6,,,) triplet;

6. Finally, calculate seabed level at any location of the inner model domain via Eq. (5.14).

5.5.3 Case study

The area of interest is Sitia beach that is located in the north-eastern part of the Prefecture of
Lassithi, Crete, on the west side of the homonymaous bay; see Figure 5-9. It is a 2-km long beach
with variable width of maximum value around 35 m, and exhibits a typical U-shape in the NW-
SE orientation. Due to the shape and orientation of the examined beach, the wave action is
confined to the north and north-eastern directions, which is the primary factor for the settlement
of sediments. At the western part of the beach there is a river system (Pantelis -or Stomios-
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river), following dry and wet periods, that discharges into the bay, and there is also the
homonymous port that can accommodate both small fishing vessels and larger merchant and
passenger vessels.

Timeseries of Calculate bottom orbital
Hs, Tp, B, at velocity, bed shear stress,
P and Py, wave shear velocity at P4

Extract over-critical values
of Hs, Tp at Py

No Identify over-critical values of
Hs, Tp at Py, based on the
Identify sub-critical values of same timestep of previous step
Hs>0.5, Tp at Pipy m (= Over- |
critical ones) *
* Grouping of over-critical values
of Hg, Tp at Py, and
Grouping of sub-critical values calculation of 8,, for each class
of Hg, Tp at Py, o, and
calculation of 6, for each class l
¢ Calculate rates of bed level
Calculate rates of bed level Chanogfe:g:t?gﬁizsasiz? for
change with MIKE21 CFM for
sub-critical classes

v

Calculate bed level at various locations with Eq. (10)

Figure 5-8. Flow chart of the proposed methodology.

Figure 5-9 also presents an overview of the points mentioned in Section 5.5.2 for the case study
of this work. In this case study h.q = 6.5 m, thus P.q was selected on the isobath of 6.5 m and
in the middle of the longshore direction of the beach.

The homonym town, Sitia, has become a tourist attraction the last decades, mainly during the
summer period, while tourist infrastructures (e.g. hotels, restaurants), and in general, human
activities, place pressure on the coastal environment. Moreover, the main road that connects
Sitia with other tourist destinations at the eastern part of the island, such as the palm forest Vai,
was developed to a great extent beside the coastal front.

To this end, erosion phenomena are evident due to both the intensive residential and
infrastructure-based development of the wider area along with the physical conditions that seem
to be more frequent and of longer duration. Specifically, at the end of 2016 the front of the
coastal road that is contiguous to the eastern part of the beach collapsed after the accumulative
action of intense weather conditions that took place the last few years, causing several problems
and safety issues to the local residents and tourists. Moreover, the sediment supply of the beach
is relatively limited while the construction of the adjacent harbour at the western part of the
coast, in order to serve the needs for tourism and fishing, puts additional pressures and
intensifies erosion rates.
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Figure 5-9. Aerial map of Sitia bay along with the offshore locations of the input data for
the outer model domain (left map), and the study area of Sitia beach (inner model domain)
along with the locations of Pinnm and Pcq (right map) used in the analysis. (Source: Google

Earth)

5.5.4 Model setup

As mentioned above, the process-based numerical model that is used in this study is MIKE21
CFM developed by the Danish Hydraulic Institute (DHI). MIKE21 CFM is a depth-averaged
two-dimensional numerical model used to study and simulate a wide range of coastal
hydrodynamic problems including the description and interaction of the relevant processes,
such as currents, waves and sediment transport in coastal areas, among others. This numerical
modelling software package includes several interrelated modules, of which the following are
used for the purpose of this study: (i) the hydrodynamic (HD) module; (ii) the spectral wave
(SW) module, and; (iii) the sand transport (ST) module. Through a dynamic coupling,
hydrodynamic and spectral wave computations are performed simultaneously to calculate
sediment transport rates and update bathymetry at each timestep. Specifically, sediment
modelling is established on: (i) a depth-averaged hydrodynamic model, based on the depth-
integrated incompressible Reynolds averaged Navier-Stokes equations; (ii) a phase-averaged
wave model, based on the wave action conservation equation, and; (iii) sediment transport
tables calculated in advance for every combination of current, wave, bathymetry and sediment
conditions appearing in the simulation; for a more detailed description of the three modules,
see Belibassakis and Karathanasi (2017).

In the following subsections, the boundary conditions and the model parameters used for the

model simulations are described for each module, along with some necessary information as
regards the model grid and wave climate.

Bathymetry and unstructured grid

As already mentioned, in this analysis, the outer model domain is used for the transformation
of the wave conditions from the available wave time series towards the shore. This model
domain covers a distance of 7.5 km in the longshore direction and 7.8 km for the cross-shore
one. The total number of triangular elements in the outer domain is 1,284 with 759 nodes while
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the maximum size of the elements is approximately 0.12 km?; see also Figure 5-10(a). The
bathymetry of the outer model domain presented in Figure 5-10(b), shows that the seabed
topography is quite mild. From the shoreline up to the isobath of =75 m, the contours are parallel
and the maximum depth (—226 m) is observed at the north-western part of the domain.
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Figure 5-10. (a) Mesh with triangles for the outer model. (b) The bathymetry of the outer
model domain.

As regards the inner model domain, it is divided into two nested grid domains, going gradually
from the outer area with the lower resolution (i.e. level 1) up to the computational grid with the
highest resolution (i.e. level 2), where the smaller triangular elements represent areas where the
accuracy in the wave, current and sediment transport calculations are important; see also Figure
5-11(a) for the representation of the different levels and the final mesh generation of the
examined area. Specifically, level 1 extends both in the longshore and cross-shore directions
approximately 1.7 km with the area of each triangular element not exceeding 6,580 m?. Let us
note in advance that the appropriate forces are imposed at the boundaries of the outmost level
(i.e. level 1) for the generation of flow and wave conditions, which in turn define the
corresponding boundary conditions of the inmost level (i.e. level 2). The second, and more
detailed, computational grid (level 2) extends in the longshore and cross-shore directions 1,400
m and 140 m, respectively, with maximum area of each triangular cell up to 1,050 m?. The total
number of grid cells in the inner domain is 2,135 with 1,282 nodes.

The bathymetry data of the inner model domain were digitized from maps of different spatial
scales obtained from the Hellenic Navy Hydrographic Service (HNHS). The above data were
enriched for the outer model domain with bathymetric grid points from the European Marine
Observation and Data Network (EMODnet) Digital Bathymetry database with 1/8 of an arc
minute (~230 m) resolution (Marine Information Service, 2016).

In Figure 5-11(b), the 2D bathymetric representation of the study area is displayed in Google
Earth for levels 1 and 2. The isobaths from —20 m to lower depths are generally parallel to the
shoreline and are evenly flattened going from the offshore part towards the shore. The highest
depth (close to —50 m) is encountered in the north-western part of level 1 while the 10-m isobath
is about 410 m from the coastline. In the eastern part of Sitia beach, there are beachrocks aligned
parallel to the shoreline starting approximately from —1.5 m depth and ending to the coast. The
formations act as natural submerged breakwaters mitigating erosion phenomena at this part of
the coast.
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Figure 5-11. (a) Mesh with triangles using two levels for the inner model domain. (b) The
inner model domain showing the bathymetry of the examined area.

Wave conditions

As regards the wave characteristics of the wider study area, the analysis relies on 1-year time
series, between 01/01/2016 and 31/12/2016, at the middle point of the boundary of the outer
model, i.e. at Powi2 (See also Figure 5-9, left map), with geographical coordinates 35.271°N—
26.125°E, obtained from the Mediterrancan Sea Waves database. The relevant information
include significant wave height Hg, peak wave period T, and mean wave direction 6,,
(measured clockwise from north), with an 1-hour resolution. These time series were used as
input for the wave propagation from the offshore to the near-shore using MIKE21 CFM (SW
and HD modules). After this simulation, the spectral time series were extracted for the northern
and eastern boundaries of the inner model domain (with the finest triangular elements),
presented in the right map of Figure 5-9, in order to be used as input for the rest simulations.

The basic statistical measures at Po«2 include mean value (m), standard deviation (sd),
minimum (min) and maximum (max) values, 50th percentile (p50), skewness (sk) and kurtosis
(ku), and the results are presented in Table 5-1. On average, the wave intensity is characterized
low with mean values my, = 0.9 m, my, = 5.08 sand my_ = 394.1°. The most intense wave
incident occurred on 6th February, 2016 with Hg = 4.8 m and corresponding Tp = 9.23 s and
0m = 344.4° during a two-day storm. The value of sk, (0.23), close to zero, indicates that the
distribution of the corresponding data is close to be symmetrical while the highest value of ku
(7.1) is given by Hs indicating a sharp peak of the distribution.

Table 5-1. Basic statistics of the wave parameters obtained from the spectral time series at
Pou2 between 01/2016 and 12/2016. Square brackets denote units of the corresponding
wave parameter where necessary.

N m sd min p50 max sk ku
Hg (m) 8784 0.9 0.7 0.1 0.7 4.8 18(-) 7.1()
Tp (3) 5.08 1.53 1.37 5.21 10.15 023(-) 29(»)
O (°) 3941 06(») - 396.7 - -0.01(-) 0.7(-)
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Wave rose diagram at PWIZ (01/2016-12/2016)
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Figure 5-12. Rose diagram of significant wave height and wave direction at Po.2 for the
period 01/2016-12/2016. Intervals for Hg and 6,,, are AHg = 0.5 and 46,,, = 15°,
respectively.

As regards 8,,, the low value of sd (0.6) corresponds to a circular dataset that is highly
concentrated, which can be also verified in Figure 5-12, while sk value close to zero (—0.01)
denotes a unimodal distribution. The wave rose of Hg at Pou2 is depicted in Figure 5-12, along
with the corresponding frequencies of occurrence. The scattering of wave directions is limited
to the sector due to the topography and coast orientation of the study area with the prevailing
wave directions coming from the north direction (sector [300°,315°]), which are attributed to
the very large fetch (390 km). The highest frequency of occurrence (13%) as regards wave
propagation in the dominant direction is observed for values of Hg between 0.5 mand 1 m while
the corresponding values of T, exhibiting the highest frequency of occurrence are between 4 s
and 6 s. Intense sea states (Hs > 2.5 m) with the highest frequency of occurrence

(2%) correspond to the sector [345°,0°].

Input data

For practical reasons, the period of the simulation is confined to one year, i.e. from January 1
to December 31, 2016. As already mentioned the bathymetry resolution for the inner model
domain gets progressively finer as we move from level 1 to level 2, which is the area of interest
as concerns the simulation results and the evaluation of the methodology. The timestep is set to
At = 3600 s, equal with the time interval of the available time series. Prior to the description
of the input data for the one-year wave time series, let it be mentioned that the authors kept
some parameters at their default values since no in situ measurements were available for
calibration of the model.

As regards HD module, the most essential input data include: wave radiation stress gradients
that force the flows, bed resistance, eddy viscosity and boundary conditions. Eddy viscosity is
based on the Smagorinsky coefficient with a constant value at 0.28, bed resistance expressed
through the Manning number was fixed (32 m*?/s) in the entire inner model domain apart from
its south-eastern part due to the presence of bedrock formations while density is not updated
during the simulation (barotropic mode). Note that tidal potential is very low in Sitia bay thus
it is not considered in the model setup. At the open boundaries, current velocities (varying in
time and along boundary) are used as input obtained from the simulation results of the outer
model while at the closed boundary, the normal velocity component is set to zero, assuming
full slip boundary conditions.
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As in the HD module, the instationary mode as regards time formulation was adopted as well
in the SW module as well, with a directionally decoupled parametric formulation. The
conditions at the open boundaries (at the north and east side of the model domain) were kept
constant in space (along the boundary line) and varying in time while the boundary data
consisted of significant wave height Hg, peak wave period Tp, mean wave direction 6,,, and
directional spreading index n,. Additional model parameters were wave breaking specified by
the gamma parameter y,,, = 0.8 constant in space, bottom friction specified by the Nikurdase
roughness ky, which was varying in space ranging from 6.25 mm to 0.25 mm for level 1, and
1.9 mm for level 2 while for the bedrock formations the value of 62.5 mm was selected.

Regarding the setting up of the ST module, sediment transport rates and seabed level changes
under the combined action of waves and currents are calculated through interpolation of
sediment transport tables. These tables are generated in advance and include the following
parameters: root-mean square wave height, peak period, current speed, wave height-to-water
depth ratio, angle between current and waves, median grain diameter d<, and sediment grading.
The ST calculations are activated at the initial timestep while the timestep factor is set to 1,
meaning that sediment transport rates and seabed level are calculated every timestep. Apart
from the flow (HD) and wave (SW) forcings, the specification of sediment properties and the
considerations of morphological impact on hydrodynamics are two important features that need
to be provided for the area of interest. To this end, as regards the granulometric composition of
the bottom sediments in the study area, the sea bottom consists of sand with an average diameter
of ds, around 0.65-0.85 mm up to the isodepths of 1.5-2 m and with dg, between 0.08 mm
and 0.25 mm for depths above 15 m (Anagnostou et al., 2017). Sediment grading was kept
fixed, equal to 1.45, at the entire model domain. The initial bed layer thickness for all levels
was set to 0.5 m apart from the bedrock part (0.0001 m).

In terms of the representative wave conditions (both over- and sub-critical ones), the parameters
of the model setup remained the same except for the time formulation (quasi stationary mode)

and the start time of the ST calculations since all modules were synchronized to start at the
same timestep.

5.5.5 Results

Representative wave conditions

In this study, the time period of the analysed wave data is confined between 01/2016 and
12/2016; henceforth, when we refer to the full time series of 2016 we use the term “reference
wave data”. The time series of the reference wave data for Hg and Tp at Pinnm is presented in
Figure 5-13. Consecutive intense wave conditions with Hg > 1.5 m occurred mainly during the
last two months of the examined year. In the majority of the timesteps, high values of Hg
correspond to high values of T, as regards the examined location, rendering these pairs
candidates for the initiation motion of sediments. According to the methodology, the first step
is to calculate representative orbital velocity, bed shear stress and wave shear velocity by using
the Hg and Tp time series of Pcg by applying Egs. (5.4), (5.9) and (5.12), respectively. Based on
the calculation of the Shields parameter and its threshold value, the over-critical wave
conditions at Pcq are determined. Classifying the reference wave data at Pcq into classes of Hg
and Tp with intervals 0.5 m and 1 s, respectively, we obtain Figure 5-14(b). From this figure it
can be noticed that the lower threshold values for the onset of sediment transport, based on the
Shields criterion, correspond to waves higher than 1 m with peak period between 6 s and 10 s
and mean wave direction around 25°-29° as regards Pcq.
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Figure 5-13. Time series of Hg and Tp at Pinnm for the year 2016. Blue and red dots
indicate over-critical values of Hg and Tp, respectively.

Identifying the corresponding wave conditions at the boundary of the inner model, i.e. at Pinnm,
the corresponding threshold values are presented in Figure 5-14(a) with the blue outline having
minimum values 1.5 m and 6 s for Hg and T, respectively, and in the range [355°, 5°] for 6,,,.
As a whole, nine representative intense wave conditions (i.e. over-critical pairs) were taken into
account for the estimation of rates of seabed level chanrg over the examined period. From the
same figure, the calm (sub-critical) wave conditions were derived by further grouping these
classes into eight representative calm wave conditions with the same interval for Hg and a
varying one for Tp, depending on the bivariate histogram. Let us remind that small values of
Hs (i.e. <0.5 m) are not considered in the next steps of the technique since the model runs of
the sensitivity analysis, performed by the same authors, demonstrated that such waves present
almost negligible quantities of sediment transport rates. Altogether, 17 (Hg, Tp) pairs, along
with the corresponding values of 6,,, are considered in the analysis, which were simulated
separately.

Bivariate histogram of H; and T, for P,.,, ., between 01/2016 and 12/2018 (a) Bivariate histogram of H; and T, for P4 between 01/2016 and 12/2016 (b
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Figure 5-14. Bivariate histogram of (Hs, Tp) for (@) Pinnm, and (b) Pcq for the year 2016.
The blue closed lines indicate the over-critical values and the green rectangles indicate the
sub-critical pairs.
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Application of the methodology at the examined coast

Eight shallow locations are selected for examining the methodology described in Section 5.5.2;
their geographical location, depth and distance from shore are given in Table 5-2. These points
cover a distance of approximately 1,100 m along the coast with their in-between distance being
around 150 m; their location on the map is shown in Figure 5-15(a).

Table 5-2. Name of location, geographical coordinates, depth and distance from shore.

Location Geographical coordinates (lon, lat) Depth Distance from shore
©) (m) (m)

A (26.1090°, 35.2060°) -1.23 26

B (26.1101°, 35.2050°) -1.42 38

C (26.1113°, 35.2041°) -1.38 37

D (26.1129°, 35.2030°) -1.08 37

E (26.1143°, 35.2024°) -1.57 41

F (26.1158°,35.2017°) -1.02 39

G (26.1172°,35.2013°) -0.87 40

H (26.1188°, 35.2007°) -0.58 45

35.2100

35.2075

35.2050

Latitude [deg]

35.2025

26.1100 26.1150
Longitude [deg]

Figure 5-15. (a) Map of the examined area (from Google Earth) indicating the locations
for the estimation of seabed level based on the proposed methodology at Sitia beach. (b)
Photo near location G indicating erosion problem.

As regards the over-critical (Hg, Tp) pairs, the values of rates of seabed level change for

locations C, D, E, F, G and H are negative, with values between —0.003 m/day and —0.003
m/day and —0.036 m/day. In general, the eastern locations (i.e. E, F, G and H) present the
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highest negative rates of seabed level change while the western locations A and B are
characterized by negative and positive rates of varying magnitude. With respect to the sub-
critical (Hg, Tp) pairs, smaller, negative and positive, rates of seabed level change are provided
by all locations compared to the above pairs with the highest positive value (0.034 m/day)
encountered at location E and the highest negative value (—0.033 m/day) at location F.

A more analytic representation for estimating seabed level with the proposed methodology is
given in Figure 5-16 for location A, and in Figure 5-17 for location F regarding specific
representative (Hg, Tp) pairs. In the left panels of the above figures, the vertical lines denote the
time windows of the over-critical (Hg, Tp) pairs in terms of sediment initiation; in the examined
annual time scale, 30 time frames were identified by the methodology. In the right panels of the
same figures, the rates of seabed level change are plotted for the two different types of
representative wave conditions (i.e. over- and sub-critical). As it was expected, the rates of
seabed level change for the over-critical (Hg, Tp) pair present higher values compared with the
sub-critical pairs at both locations.
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Figure 5-16. (a) Wave parameters along with seabed levels obtained from the two
approaches. (b) Rates of seabed level change obtained from the proposed methodology for
one over-critical and one sub-critical representative wave condition at point A
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Figure 5-17. (a) Wave parameters along with seabed levels obtained from the two
approaches. (b) Rates of seabed level change obtained from the proposed methodology for
one over-critical and one sub-critical representative wave condition at point F.
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Specifically, as regards location A, the pattern of the over-critical wave case shows some
resemblance with the sub-critical one; in both cases, the rate of seabed level change strongly
fluctuates during the 2-week simulation, taking mainly positive values, while at the 8th day of
simulation a relative stabilization is evident. On the other hand, for location F, the rates present
a dissimilar behaviour from location A; the rate of seabed level change seems to be stabilized
around zero after eight days of simulation for the over-critical representative wave conditions
while it takes constantly negative values, after the second day of simulation, with bigger
fluctuations for the sub-critical ones.

In Figure 5-18, the values of seabed level obtained from the simulations results of MIKE21
CFM with the reference wave data as input, represented by the dashed line, and the proposed
methodology, represented by the solid line, are plotted at the examined locations. From this
figure, the following comments can be summarized:

o Locations B and D exhibit a very good agreement between the two approaches; throughout
the year, the corresponding seabed levels follow the same tendency and are very close with
each other while as regards the last month, the deviation between the two seabed level values
is 0.7 cm and 0.4 cm, respectively, which are the smallest differences among the examined
cases.

e Locations A and C, which follow a bathymetric profile with smooth to intermediate slopes
(not shown here), and location H as well, exhibit medium-size deviations at the end of 2016,
with values between 2.2 cm and 2.8 c¢cm, respectively; however, the resemblance of the
pattern that the two lines follow throughout the year is rather poor.

e The locations E and F, with the latter having a steep bathymetric profile, exhibit the second
largest deviation at the end of 2016 (4.5 cm) but the lines indicating the seabed levels are in
accordance in terms of the trend.

e Location G (see also Figure 5-15(b)) presents the highest deviation (6.6 cm) compared with
the reference time series.

e The seabed level slope at locations A, B and C is positive indicating accretion in the western
side of the Sitia coast while location D is characterized by a small negative slope (i.e. erosion
pattern). Locations E and F present a steeper positive slope than the western locations, and
locations G and H exhibit a higher negative slope than location D, implying more distinct
erosion patterns. Overall, this behaviour coincides quite satisfactorily with the real situation
encountered in the Sitia coast during the examined period, where the eastern part has been
eroded to a great extent leading to the collapse of the retaining wall of the coastal road.

5.5.6 Discussion

The scope of this work was to reduce the reference wave data (of one-year duration) into two
groups, i.e. (i) the over-critical (Hg, Tp) pairs that fulfil the Shields criterion leading to sediment
initiation, and (ii) the sub-critical (Hg, Tp) pairs that do not fulfil this criterion, in order to
significantly reduce computational times and compare the estimated seabed level values with
the full case. The results of the proposed methodology compared to the ones obtained from
utilizing the entire time series of the available wave data present similar trends, and the
differences remain under 7%.

In this connection, some notable aspects should be remarked. Various sources of uncertainties
as regards the discrepancies can be attributed to the assumptions that are imposed throughout
the adopted technique. For instance, turbulence caused by wave breaking is not considered
although it can be a source of sediment mobilization. Other uncertainties deal with the
calculation of bottom orbital velocity, related indirectly with the Shields criterion, that does not
take into account the presence of currents while the assumed spectral form might also influence
bottom orbital velocity. For more details in terms of the potential sources of error in the
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calculation of bottom orbital velocity from wave spectral parameters such as Hg and Tp, see
further assumptions provided by Wiberg and Sherwood (2008). Furthermore, in the context of
the sensitivity analysis, the authors followed an alternative way to estimate bottom orbital
velocity and friction factor. The corresponding values derived from the simulation results of
the reference wave data reached common over-critical combinations of Hg and Tp.

Another potential source of uncertainty could be the estimation method of the mean rates of
seabed level change. Many dissimilar ways were tested by the authors including mean rates
from one week, different mean rates based on the (Hg, Tp) pairs and the examined location,
mean rates calculated with a smaller time interval during the simulation runs etc. However, the
adopted approach showed consistently better performance in terms of seabed level prediction.

Let us also highlight that a more proper and fair comparison would be to assess both results
from model simulations with in situ measurements of seabed level at the site of interest. The
absence of real measurements has a twofold effect: i) it places the comparison into relative
terms, and ii) it renders model calibration infeasible, thus the model results per se should be
used with caution. Nevertheless, such comparison is beyond the scopes of this study. Moreover,
due to the lack of real measurements, it is also recommended not to apply speed-up techniques
since they require careful calibration and validation.

Another worth-mentioning fact refers to the distribution of wave direction. Specifically, the
window of wave directions that affect significantly the morphological (bed level) conditions of
the examined beach is very narrow since in the majority northern wave directions are dominant.
This feature along with the gentle bottom slope and the uniformity of the coast as regards its
shape render the study area a simple and easy example to implement this methodology
compared to more complex cases.
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Figure 5-18. Seabed levels derived from MIKE21 CFM (dashed red line) and the proposed
methodology (solid black line).

155



Case study 2: Sediment transport simulation based on the influence of cumulative wave action
at a sandy beach

In reference with the overall computation time of the model simulations, there is a striking
discrepancy between the two approaches. For MIKE21 CFM with the full reference wave data
as input, the total runtime was 542 h while for the 17 representative wave cases of the proposed
methodology, the corresponding runtime was 2 h. All simulations were conducted on an i7-
2600 CPU server with 16 GB RAM and 3.40 GHz processor. Although current version of DHI
is designed for parallel computing using graphics processors and could significantly accelerate
the calculation process, still the present approach contributes to a significant runtime reduction,
which for the particular non-parallel computing setup used is of the order of 99.6%. The latter
result is quite impressive compared to the outcome presented in Figure 5-18, at least for the
case-study examined, characterised by mild bottom topography and coastal characteristics, and
regularly in the distribution of offshore wave directions.
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Chapter 6 Conclusions and recommendations for future
research directions

6.1 Summary

The objective that was at the core of this thesis was the probabilistic modelling of wind and
wave variables, both linear and directional, with focus on the entire data sample, the extreme
data and the relationship between two linear or directional variables. In this context, two
specific areas of application that receive a lot of attention from the scientific community were
selected for further investigation: i) the marine renewable energy sector, and; ii) the issue of
coastal erosion. The two most promising forms of marine renewable energy for development
in the Mediterranean Sea is offshore wind, with floating foundations offering the most optimum
solution due to the deep continental shelf of this basin if the technological challenges are
surpassed, and wave energy with numerous concepts and configurations but still with no
reliable and cost-efficient solution towards commercialization. On the other hand, wind and
wave forces are among the most important factors that affect erosion rates of a sandy beach.
Apparently, these two research fields are also interconnected in many aspects; for instance, the
presence of a wind (or wave) farm close to the coastal zone have impacts on the wave field and
in turn, on the morphodynamics of the nearby coastal area due to the interactions between the
turbines (devices) themselves, and with the adjacent coastal environment as well. Below, the
main conclusions and contributions from this study are summarized.

Metocean climate variability has received a lot of attention in the relevant literature as the
lifetime of marine renewable energy projects is planned for a long period (e.g. usually 30 years
for an offshore wind farm). The main concern is energy generation, which is directly linked to
various metocean variables. Since the spatial distribution and quality of wind/wave resource
can be altered rigorously because of the climate change, the knowledge of climate variability
can shed light on many aspects, such as planning phase and operating conditions. In this
connection, when considering sufficiently long-duration metocean data, it was shown that long-
term variations of metocean climate of both linear and directional characteristics should be
identified and quantified not only for the annual (inter-annual) time scale but for seasonal and
decadal (inter-decadal) cycles as well, indicating additional features and trends that might be
associated with climate change. Moreover, diverse probabilistic models for linear and
directional variables were quantitatively assessed in a consistent manner for both the univariate
and bivariate case, revealing interesting aspects for the linear-directional modelling.

In offshore and coastal engineering applications, it is essential to work with metocean data of
high quality. Among the main sources of uncertainty is uncertainties associated with the
deficiencies that characterize each data source. Such uncertainties can be reduced by calibrating
linear and directional data from the less accurate data sources, i.e. numerical models and
satellite observations, with in situ measurements used as a reference source. Regression
calibration method was used for this purpose with emphasis on robust estimators for linear
variables, known to be efficient in the presence of outliers or when there are small deviations
from the model assumptions. Statistical measures, such as bias, root mean square error and
scatter index, were calculated from concurrent data to quantify the performance of the
corresponding regression model and in turn, the relevant uncertainties. Calibration of
directional variables was also performed in the present thesis with the results verifying its
significance in engineering applications.

As already mentioned, the accurate analysis of extreme weather conditions plays a decisive role

in marine renewable energy and provides basic information for the research on the design and
in turn, reliability of the structure to withstand all environmental loads that is expected to face.
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The directional description of the extreme climate of linear metocean variables is also important
especially in planning and siting of a marine renewable energy project. On these grounds, the
dependence of linear metocean variables with directionality was examined for performing
extreme value analysis. Shape and scale parameters of the Generalized Pareto distribution were
considered as functions of direction to account for this dependence in the estimation of design
values, which was expressed by a Fourier series expansion due to its periodicity. Different
methods for threshold selection and declustering were investigated and a penalised likelihood
criterion was proposed for the estimation of the model parameters.

With regard to the problem of coastal erosion, the wave regime is a determinative factor in the
formation of coastal shoreline and morphology. To this end, the response of sandy beaches to
wave action under extreme (e.g. after a storm) and typical (e.g. considering the wave action
during a year) conditions was examined by utilizing two different concepts, episodic and long-
term erosion, respectively. In the former case, coastal erosion is mainly related to the
predominance of high waves with a time span from some hours to days while in the latter one,
the coast progressively adapts its form to the frequency and intensity of extreme events along
with the prolonged calm wave conditions. Modelling of wave propagation, circulation and
sediment transport was performed with the MIKE software. Specific cross-shore sections were
selected to study the beach profile changes as regards episodic events at a beach, where
measurements, available from a topographical survey were used as a reference source for
comparison purposes. A cost-effective methodology was proposed for the prediction of the
evolution of seabed level in the long-term erosion and specific points along a sandy beach were
assessed. The obtained numerical results showed a fair agreement with the real status of the
examined coast.

6.2 Future research directions

In this chapter, some suggestions for future research on different directions related with the
scopes of the present thesis are summarized.

e Construction of trivariate statistical models for metocean data, including linear and
directional variables, for the full description of sea states and wind conditions. Such models
are useful for the selection of the most suitable energy device and its optimum design and
arrangement (in case of arrays) at a candidate site.

¢ Quantitative assessment of the impact of climate change on the energy extraction of marine
renewable energy sources to understand how the availability of these resources will be
influenced. For this purpose, either hindcast or climate models can be used while estimates
of changes for the directional variables should also be included.

¢ I|dentification of outliers in circular data through various statistics and investigation of robust
estimators that are extended in the circular-circular regression model. The results of this
thesis indicate that robust estimators applied in linear variables perform consistently better
that the classical regression methods; hence, studying further the influence of outliers in
directional data would be of considerable interest.

e As regards the directional extreme value model, it would be interesting to examine an
alternative model to Fourier series expansion for expressing smoothly the periodicity of the
parameters in terms of direction. Moreover, the consideration of a threshold that is
directionally varying would also be meaningful while the effects of selecting various
numbers of sectors, either equiangular or not, for the independent fits deserve a thorough
investigation.

¢ Implementation of the methodology proposed for the estimation of the seabed level with
simultaneous reduction of the computational time to another coastal site. Preferably, this site
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should have more complex topographical features that allow a wider range of wave
directions affecting the morphological conditions while the availability of in situ
measurements of seabed is important for validation purposes. Furthermore, the proposed
methodology could be enhanced. For instance, additional factors that influence sediment
transport and seabed level, such as currents, could be included while the impacts of a finer
resolution of the involved wave parameters during the discretization process along with a
longer reference time series could be also analysed.
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Appendix A Descriptive statistics for circular variables

For the representation of circular data two coordinates systems are used: i) the rectangular (or
Cartesian) coordinate system, representing the location of a point Z on a plane by a pair of
coordinates (x,, y;), and ii) the polar coordinate system, where the distance r between the
origin and the point Z is needed along with the angle 6 formed by the reference line and a line
going through point; see also Figure A-1.

Figure A-1. Graphical representation of rectangular and orthogonal coordinate systems.
The two coordinate systems are related with each other by the following equations:

xz = rcosf,y; = rsind. (A1)

Since the direction is only of interest, it is considered that we work on a unit circle (i.e. with
r = 1 centred at the origin). Hence, Eq. (A.1) simply becomes

Xz = cosb,y; = sin6. (A.2)

Equivalently, another representation for circular data is achieved through complex number. The
corresponding relation is z = exp(if) = cos6 + isinf, where i = v—1.

Al Measures of location

Let us assume a circular random variable @ and 64, ..., 8,, a set of circular observations with n
the total number of observations. The calculation of the circular mean direction is based on the
trigonometric functions sine and cosine of the circular observations and is obtained by working
with polar coordinates. The corresponding expression is given by:

atan(S/0), c>0S5=0
atan(S/C) + 2n,C >0,5<0
atan(S§/C)+m, C<O0

e aan2(5/C) =4, C=05>0 (A-3)
—-1/2, C=0S5S<0
undefined, C=0S=0,

where C = Y%, cos; and S = }7_, sinf;. When C = S = 0 (and the sample size is even), the
circular data are uniformly/evenly distributed or have a cyclic structure over the unit circle.
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Measures of concentration, dispersion and circular distance

Mean direction reflects the centre of a (unimodal) set of directions and is independent of the
choice of zero direction and the sense of rotation.

The quantity R = VC? + S? > 0 is called resultant length and is associated with mean direction
by the equations

cosf = C/R,sinf = S/R. (A.4)

Apart from the mean direction (Eq. (A.3)), an additional measure of location is the sample
median direction 8. This measure is defined by any angle w for which the circular data are
equally divided in the arc [w, w + m] and the majority of the data points lie closer to w rather
than the antipodal point (i.e. w + ). Just as in linear data, when the sample size n is odd, the
median direction is one of the data points; otherwise, it is the mean value of two data points. It
is obvious that the median is not uniquely defined therefore the interpretation of the results
should be made with caution.

A2 Measures of concentration, dispersion and circular distance
The mean resultant length R = R/n, R € [0, 1],_is considered as a measure of concentration for
unimodal circular data. In general, values of R close to 1 indicate that the circular data are
highly concentrated about the mean direction. When R =1, it is implied that all the sample
observations coincide. On the other hand, R = 0 does not necessary imply that the data are
evenly spread around the circle, as already mentioned above.

The circular variance, a measure of dispersion, is defined
Vo=1—-R,V€0,1]. (A.5)
The circular standard deviation is given by

se = {—2log(1 — Vg)}'/2,s € [0, o). (A.6)

Another approximation for circular standard deviation, when V' is small, is

Se = +/2Vy =+/2(1 = R). (A7)
The sample circular dispersion is defined by

. 1-R
5=722’ (A.8)

where R, is the sample mean resultant length of 26, ..., 26,,.

A related definition is the circular distance measure between any two points 6, w on the
circumference in terms of arc lengths is

d= min(@—w,Zn—(Q—w)) =1 — |TL’— |9—w||,d € [0,7]. (A.9)

The corresponding dispersion between a set angles 64, ..., 8,, and an angle w is found by
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Sl

dlw) =

Z{n—|n—|0j—w|l}. (A.10)
j=1

The minimization of the above function yields the sample median direction.
An alternative expression of circular distance is given in terms of the cosine function as follows
d*=1-cos(0,w),d* €0,2]. (A.11)

Skewness and kurtosis are expressed in terms of the second central sine and cosine moments,
respectively, as follows

(1/m) 37 sin2(6;-0)  R,sin(8,-20)
(1-R)3/2 T (-R®2

$= and (A.12)

(1/n) X}, cos2(6; — 0) _ Rycos(6, —26) — R*

T o (A.13)

k=

In general, positive values of kurtosis imply peaked distributions and positive values of
skewness suggest that the sample data are skewed in the clockwise direction. Values of the
above measures around zero suggest symmetric distributions.

A.3 Measures of correlation

The statistical association between a linear random variable X and a circular variable ® can be
quantified through the linear—circular correlation coefficient 2., which is defined as follows:

2 2
o The T T%s — 2TxsTxcTes

Txe =
1-12 ’

(A.14)

where

Txe = p[(xq,cos 0,), (xy,co0s05),..,(x,,cosb,)]
s = pl(xq,sin 0;), (x5,sin6,),.., (x,,sin 6,)] (A.15)
1.s = p[(cos@;,sinb,), (cosb,,sinby,),.., (cos b, ,sinb,)],

with p denoting the Pearson product-moment correlation between X and 6.

The statistical correlation coefficient between two directional random variables @, @ are
estimated

r2 = (rczc + rczs + rszc + Tszs) + 2Rcs111p — 2R 51y — 2ResT
o? 1 -HA-1) '

(A.16)

where

Res = Teelss + TesTse
r, = p[(cosB;,sinb,), (cosb,,sinb,), ..., (cos b, ,sinb,)] (A.17)
ry = p[(cos ¢;,sin¢p,), (cos ¢p,,sinp,), ..., (cos ¢, , sin ¢p,,)].
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Sample trigonometric moments

A4 Sample trigonometric moments

The p —th trigonometric moment about the zero direction is

n
1
= ;Z Z(cospe + i sinp6;) = C, + iS,, (A.18)

wherep =0,+1,+2,. = —Z] 1 cospb; andS = Z] 1 sinp6;. Also note thatC_, = Cyp
and S_, = =S,.

The polar representation of m'p, when }_?p > 0,is

= R,e'% = R,(cosb, + isind,), (A.19)

where I?p is the sample mean resultant length of p#;,...,p6, and 9_,, is the sample mean
direction of p84, ..., pO,.
From Egs.(A.4), (A.18) and (A.19) it follows that

Cp = R,cosf, and S, = R,,sinb,,. (A.20)

As regards the p —th trigonometric moment about the mean direction, the corresponding
relation is

m, = ¢, +i5,, (A.22)

_ 1 _ 1 . =
where ¢, = ;2}21 cosp(8; — 0) and 5, = ;2?:1 sinp(6; — 0).
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Appendix B Statistical analysis for metocean climate
modelling

In the context of metocean climate modelling, various statistical measures can be applied for
the description of the variables of interest. The most common measures are the low-order
statistical moments (e.g. mean value, standard deviation) that can reveal different features of
the examined phenomenon when estimated for different time scales (e.g. monthly, annual,
decadal etc.) if the available time series permits such estimations; see Appendix B.1. Additional
informative parameters are the measures of variability and correlation; for instance, mean
annual and inter-annual variability, defined in Appendix B.2, are important measures in the
climate analysis and a variety of applications such as offshore engineering industry. Moreover,
the relation between linear and directional variables can be examined in terms of correlation
coefficients, as described in Appendix B.3, while evaluation metrics presented in Appendix
B.4, are used to quantify the quality of the regression models. In Appendix B.5, the coefficient
of determination (for the univariate case) is provided, which is widely used when a number of
distributions are compared in terms of suitability, and in Appendix B.6, the Mann-Kendall test,
used for monotonic trend analysis, is briefly described.

B.1 Descriptive statistics for different time scales

The following notation and equations correspond to the linear variable X. The directional
variable and its derived parameters follow the same nomenclature; however, in this case, the
statistical parameters are calculated by using directional statistics. Some background theory of
directional statistics is provided in Appendix A. Wherever necessary, the explicit notation of
the directional parameters is provided.

Let denote the annual mean value of a linear variable X for a particular year j by

N
1
Myy=j = NZ Xi) (B.1)
i=1

where N is the total number of the p —hour intervals, where usually p = 1,3,6, for year j and
x; is the time series of the linear variable. The sequence of the above annual mean values for a
series of years is denoted by m, y(j), j = 1,2, ...,], wherefrom the mean annual value m,y is
estimated as follows:

]
1 .
myy = TZ My (). (B.2)

The monthly mean wind speed for a particular year j and month m, denoted by m,, y—j yy=m, IS
obtained

K
1
mu,Y:j,M=m = EZ xiy (B3)
i=1

where K is the total number of the p-hour intervals for month m of year j. The sequence of the
above monthly mean values for a series of years is denoted by m, y ,,(j,m),j = 1,2,...,], m =
1,2, ..., M. The mean monthly value for a particular month m, m,, -, can be estimated from
an appropriately selected subsequence of m,, y »,(j, m), as follows:
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Variability measures

J
1
My M=m = Tz My y=m (), form = 1,2,...,12, (B.4)
j=1

where my y—, (), j = 1,2, ..., ], denotes the sequence of monthly mean values for the particular
month m for the entire series of years.

B.2 Variability measures
The coefficient of variation is used as a relative measure of the dispersion of data points around

the mean. In particular, the mean annual variability, denoted as CV (also referred to as MAV),
provides a measure of variability of the linear variable within each year and is estimated by

(B.5)

where S,, v (j) is the standard deviation of the linear variable for the year j, j = 1,2, ...,] (Stopa
etal., 2013).

The inter-annual variability, denoted as IAV, provides an indication of the variability from year-
to-year of the linear variable. It is defined as the ratio of the standard deviation S, (;) of the

annual mean value sequence m, y ;, to the overall mean wind speed value m,, i.e.

S B
1AV = 2er ) (B.6)
mx

B.3 Correlation measures

The statistical correlation coefficient of a series of pairs (x;,y;), i = 1,2, ...,n of two linear
random variables X, Y (linear-linear) can be estimated by

i Yie1(xi =0 —y)
S G -2, (7 — 9)?

The corresponding linear-directional and directional-directional correlation coefficients are
defined in Appendix A.3.

(B.7)

B.4 Evaluation metrics for regression (linear and directional)
models

In the context of evaluating the performance of different regression/calibration models, the
following statistical measures can be applied as regards the linear variables:

the bias (BIAS),
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n
1
BIAS =~ > (9 - x), (B.8)
i=1

the root mean square error (RMSE)

RMSE = (B.9)
the mean absolute error (MAE)
1 n
MAE == "|9; - x|, (B.10)
=
and the scatter index (SI):
RMSE
SI = = (B.11)

where n is the sample size of the dataset, x; is the i —th value of the reference linear variable,
y; is the i —th value of the calibrated linear variable and x is the mean value of the reference
linear variable. Clearly, the above-defined statistical measures are proportional (in various
forms) to the error (difference) between the corrected and the reference linear variable.
Specifically, MAE takes into consideration the sum of the absolute errors, RMSE and Sl the
sum of the errors squared, while BIAS the positive and negative value of this difference.
Though, it should be noted that RMSE (and SI) is more sensitive to the presence of outliers
than MAE, since large errors are biased towards outliers; see also Hyndman and Koehler
(2006). Let us note that MAE, RMSE and S| comprise stricter and more realistic control criteria
than BIAS, since the latter neutralizes the foregoing differences by definition, meaning that
positive differences can be offset by negative ones. The quality of a calibration performance is
characterized as ‘good’, if the values of the applied statistics are as close as possible to zero.
Let us also remind that the values of BIAS, RMSE and MAE take the units of the variable under
examination.

As regards the directional variables the following statistical measures can be applied:
the bias (BIAS),
BIAS = 6 — ¢, (B.12)

the mean circular absolute error (MCAE) (Jing-Jing et al., 2014),

n
1
MCAE = >"|d(0;, $0)l, (B.13)
i=1

where d is obtained from Eq. (A.9),

the root mean error (RME) (Karathanasi et al., 2016)
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Goodness-of-fit testing for univariate distributions

n
1 0; — ¢;
RME = —21n(—2|cos—l ¢l|), (B.14)
ni 2

and finally, a modification of the overall estimated circular prediction bias proposed by
(SenGupta et al. 2013), the mean relative bias (MRB),

MRB = %i sin (91' F ‘pi), (B.15)

i=1

where 8 and ¢ are the sample mean directions. If the values of BIAS, MCAE, RME and MRB
are close to zero, then the calibration performance is good. Let us also remind that the values
of BIAS and MCAE are in radians.

B.5 Goodness-of-fit testing for univariate distributions

The coefficient of determination is given by

2 Z?=1(Fi — F)z
Ra,l = — —_2 — 2’
r(E-F) +X,(FR-F)

(B.16)

where F estimate is obtained from the probability model, F;, i = 1, ..., n, (where n denotes the
sample size) are obtained by using the Weibull plotting positions F(x;) =i/(n+ 1), i =
1,..,n, and F = (1/n) X, F;. The Weibull plotting positions were selected since they
provide unbiased estimates of the observed cumulative probabilities regardless of the
underlying distribution.

B.6 Mann-Kendall test

The Mann-Kendall test is a non-parametric test, frequently used to detect the existence of
monotonic (upward or downward) trends in time series; see, e.g. Hipel and McLeod (1994).
The test is based on the correlation between ranks of a time series and their order, instead of
the actual values of the series, and it is less sensitive to the presence of outliers. The null
hypothesis HO is that the data come from a population of independent and identically distributed
variables. An important advantage of Mann-Kendall test is that it is distribution-free in contrast,
for example, to the regression slope test, where the residuals are assumed to be normally
distributed. On the other hand, the examined data should not be serially correlated in order for
the estimated p values to be correct. The Mann-Kendall test statistic is calculated as follows:

S = YR s sgn(X; — Xi), (B.17)
where
1, ifx>0
sgn(x) =40, ifx=0 (B.18)
—1,ifx < 0.

The variance of S (in the general case where ties are present) is given as follows:
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0¢ == [n(n—1)2n +5) — B, to(tg — 1)(2t, +5)], (B.19)

where n denotes the time series length, @ is the number of tied groups and ¢, is the number of

observations in the g —th tied group. The final test statistic Z results from the following
transformation of S:

(S—1)/0s,ifS >0
zZ={0, ifS=0 (B.20)
(S—1)/as,ifS < 0.

Positive (negative) values of Z suggest an upward (downward) trend. As the sample size
becomes larger, the test statistic Z follows approximately the Gaussian distribution.

B.7 Mardia-Wheeler-Watson test

Mardia-Wheeler-Watson test is a non-parametric procedure that can be applied to samples of
circular data in order to test the hypothesis that the examined samples have identical circular
distributions regarding mean direction, circular variance or both.

Let 6, and 6, be two independent random samples with sample size n, and n,, from
populations with continuous circular distributions P, (8) and P,(8), respectively. In order to
test the null hypothesis

Hy: P, (6) = P,(6), (B.21)
the circular ranks (uniform scores) of the combined sample are calculated; let (ry, ..., 15,1) be

the ranks of the directions of the first sample. Mardia-Wheeler-Watson test statistic is based on
the criterion

W 2(N —1)(¢}? - SJ?)’

nin;

(B.22)

where C; = :Zl cos(2mr;/N), S; = Z?il cos(2mr;/N) with j referring to sample either 1 or
2,and N = ny + n,. In order to apply efficiently this approximation, N > 17 as proposed by
Batschelet (1981) or N > 10 as proposed by Fisher (1993), which is also similar to the
proposition of Mardia and Spurr (1973). Furthermore, circular data of samples should not be
tied (i.e. equal numerical values in the combined sample) or the two sample dispersions should
not be very different (Batschelet, 1981). It has been shown that W approaches a
x? —distribution with two degrees of freedom for large N. The null hypothesis is rejected for
large values of W (>x2 ,) (Wheeler and Watson, 1964; Mardia, 1967; Batschelet, 1981).
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Appendix C Extremes

C.l1 Parameter estimation for GP distribution

The GP parameters are usually estimated by the maximum likelihood method (del Castillo and
Serra, 2015; Grimshaw, 1993), the probability weighted moments introduced by Greenwood et
al. (1979), the method of moments (Hosking and Wallis, 1987) and the elemental percentile
method based on a two-stage procedure proposed by Castillo and Hadi (1997).; see also the
extensive study of Bermudez and Kotz (2010) on this issue.

The most popular method among the estimators is the maximum likelihood (ML) method. The
likelihood function is the joint pdf of a random sample x,, ... x,, from a distribution with pdf
f(x;; @) as a function of 6, and is defined as

L(6;%) = L(6) = Hf(xi; 6),0 €0, (C.1)
i=1

where 6 is the unknown parameter (in a set £2) on which f depends, and x = (x4, ..., x,)T.
Since the natural logarithm is a monotonically increasing function, for convenience in the
calculations, the natural logarithm of the likelihood function, £(8) = InL(8) = X! f(x;; 6),
called log-likelihood function, is used to estimate the values of the parameters that maximize
this function, denoted by 8. Subsequently, 8 is the maximum likelihood estimator of 8, which
can be obtained by differentiating the log-likelihood function with respect to fand solving the
following equation:

dlnL(0)
= C.2
3 0 (C.2)
The log-likelihood function of the GP distribution is given by
( 1\ & . .
—n,logo, — (1 +—)Zlog<1 +ﬁ>,f 0,1 +& >0

f j=1 Uu Uu

(0w, §) = M (C.3)
1
l—nulnau - a_uz Vi &E=0.
j=1

Assuming that £(-) is differentiable, the ML estimator 1 = (6u,$ ) for the unknown parameters
A= (oy, &) is obtained by maximizing Eq. (C.3). The maximization problem is solved
numerically using optimization/iterative methods, such as Newton-Raphson method and
Expectation-Maximization algorithm, since no explicit solution exists for the equations derived
after differentiating the above equation.

Note that ML estimators do not exist for & > 1 since log-likelihood becomes infinite and have
higher efficiency when £ is close to zero. In general, for § < 1, ML estimators exist.
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Appendix D Numerical model: MIKE21 by DHI

The numerical modelling package that was used for the purposes of this thesis is MIKE 21/3
Coupled Model Flexible Mesh (hereafter MIKE21 CFM) developed by DHI Group (DHI,
2016a). The two-dimensional depth-averaged flow (2DH) simulations are based on a cell
centred finite volume method with an unstructured mesh for the more accurate representation
of complex coastal areas while the basic principles that are applied are the conservation of fluid
momentum, wave energy and mass (fluid and sediment). This modelling suite can be
implemented for various hydraulic phenomena in lakes, rivers, estuaries, bays, coastal areas
and seas through a dynamic modelling system; in the context of this thesis, it combines three
different modules: (i) the hydrodynamic (HD) module; (ii) the spectral wave (SW) module,
and; (iii) the sand transport (ST) module.

The general structure behind this model is first to analyse the available data as concerns initial
bathymetry, flow patterns, sediment composition etc. Then, the core computational components
of MIKE21 CFM are the first two modules, which simulate the mutual interaction between
currents and waves using a dynamic coupling for the determination of the hydraulic conditions
for the initial and subsequent situations. The results of these models are used as input for the
additional dynamic coupling that includes the third module, which gives a full feedback of the
seabed level changes on waves and flow calculations resulting in a new bathymetry until the
predefined final time period is reached. Let us note that the sediment transport rates and
morphological changes are calculated simultaneously with the hydrodynamics. The simulation
of flows and transports in marine, coastal and estuarine areas is based on a flexible mesh
approach. The quality of the available input data for all the above modules (flow velocity, wave
parameters, grain composition) is of critical importance as well as the data that will be used for
calibrating the model results.

D.1 Hydrodynamic (HD) module

The hydrodynamic model solves the 2D incompressible Reynolds averaged Navier-Stokes
equations under the Boussinesq simplifying approximation and the hypothesis of hydrostatic
pressure. The continuity equation (in horizontal Cartesian coordinates) over water depth h =
n + d, with n denoting the surface elevation and d the still water depth, is the following:

oh  O0hu A OhU _
I E-I—E_hSHD' (D.1)

where t is time, hu and hv denote the depth-averaged values of the velocity components in the
x —and y —direction, respectively, and Syp is the magnitude of discharge due to point sources.
The momentum equations for the x — and y —component are the following:

ohu 0hu* 0hvu on ho h*0p Ty T
+ + =fﬁh_gh_n__ﬁ_g__p ﬁ_ﬂ
Jt 0x dy 0x po 0x 2py0x py  Po
_ 1 (955 Oy, 9T 9(hTyy)
Po \ Ox dy dx dy

(D.2)

+ husSHD,

and
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Spectral wave (SW) module

0hv  Ohup  Ohv? 0N _hopa gh®dp Tsy Toy
at dx dy

_i(asyx " asyy) + 0(hTyy) + 9(hTyy)
Po \ O0x dy dx dy

+ hvSSHD!

where f is the Coriolis parameter, g is the gravitational acceleration, p, is the atmospheric
pressure, p, is the reference density of water, p is the water density, s;; is the radiation stresses,
T, is the surface wind stress and 7, is the bottom stress, and Tj; is the lateral stresses and u, vg
are the velocity components at which the water is discharged.

A cell-centred finite volume technique is used for the spatial discretization of the domain. An
approximate Riemann solver, known as Roe’s scheme (Roe, 1981), is used for the computation
of the convective fluxes. The solution of Egs. (D.2) and (D.3) result in the values of water
particle velocities and current components that are responsible for the sediment transport in the
coastal zone. Smagorinsky formulation is used to represent horizontal eddy viscosity while
bottom friction can be specified by the Manning’s roughness coefficient.

D.2 Spectral wave (SW) module

The spectral wave module is a third-generation spectral wind-wave generation model that
simulates the growth, decay and transformation of wind-generated waves and swells both in
offshore and coastal regions, and is based on unstructured meshes (in the geographical domain).
The above simulations are based on the conservation equation of the wave action expressed by
Eqg. (5.1). In the source term S, the following physical phenomena are included:

e wave generation and growth by wind action S;,, proposed by the quasi-linear theory
developed by Janssen in a series of studies (Janssen, 1989; Janssen, 1991; Janssen et al.,
1989) as regards wind and wave interaction;

e wave energy transfer due to non-linear wave-wave interaction S,;, using the Discrete
Interaction Approximation (DIA) of Hasselmann et al. (1985);

o dissipation of wave energy due to white-capping S,,., proposed by Hasselmann (1974) and
tuned according to Janssen (1989) and Janssen (1992);

e dissipation of wave energy due to bottom friction S, ¢, based on the approach of Johnson
and Kofoed-Hansen (2000), which takes into consideration wave and sediment properties;

e dissipation of wave energy due to wave breaking S,,;,, based on the breaking model of
Battjes and Janssen (1978), and Eldeberky and Battjes (1996).

Wind forcing and diffraction can also be included in the wave model. For the discretization of
the governing equations in the geographical and spectral space, a cell-centred finite volume
formulation is used by subdividing the continuum into non-overlapping elements, while a multi-
sequence explicit scheme is applied for the wave propagation, and a fractional step method is
implemented for the time integration, where an explicit method is used for solving the
propagation step. Two different formulations are included in this module: i) the fully spectral
formulation, suitable for near-shore applications, and ii) the directional decoupled parametric
formulation, mostly used for offshore wave modelling.

D.3 Sediment transport (ST) module

The computed flow and wave fields are used as input for the sediment transport model. The
modelling of non-cohesive sediment (i.e. sand) transport fields for the calculation of seabed
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level changes and sediment transport rates can be obtained by using the theory of combined
waves and currents, including the wave breaking effect. This module can be applied in coastal
regions (at a local or regional scale), such as estuaries, tidal inlets and coasts, as well as in
coastal structures, such as harbours.

The total sediment transport q;,: is defined by the bed load transport q,, (i.e. load that is in
continuous contact with the seabed during transport) and the sediment transport in suspension
g, (i.e. load that is moving without being in contact with the seabed due to the turbulent flow).
Wash load (i.e. finer suspended material than that of the seabed that remain in permanent
suspension) is considered negligible in the coastal environment and is not included in this
module.

As regards the bed load transport, it is calculated from the instantaneous Shields parameter
according to the model that was proposed by Engelund and Fredsee (1976). Based on the
equilibrium of agitating and stabilizing forces on a sediment particle, Engelund and Fredsee
(1976) proposed the following non-dimensional form that proved to be accurate for fine to
medium sediments:

@5 = 5p(Vo — 0.7,/6,), (D.4)

where p represents the probability that a certain fraction of the sediment particles are in
movement in a single layer and 6. is the critical Shields parameter equal to 0.045. The
probability P is defined by:

4\ —1/4

(D.5)

where p, is a dynamic friction coefficient, estimated at 0.51.

In contrast with bed load that responds instantaneously with the flow, the suspended sediment
transport is characterized by a phase-lag as regards its transport and it is the result of the product
of the time-averaged instantaneous flow wvelocities u and the instantaneous sediment
concentration c by integrating over the local water depth h:

e

T h
qs = Off(uc)dzdt, (D.6)

2d

where d is the characteristic grain dimeter, usually equal to the median grain diameter ds.

The sediment transport rates are found by linear interpolation from a sediment transport table,
which is calculated prior to the main model run in order to speed up the calculations, using an
intra wave force description. The integrated momentum approach of Fredsee (1984) is used for
the time integration of the boundary layer. Based on equilibrium sediment transport method,
the values of this table are derived from a quasi-3D numerical model (STPQ3D), which
calculates in the two horizontal dimensions (longshore and cross-shore) time-averaged and
instantaneous hydrodynamic flow conditions that drive sediment transport algorithms with an
one-dimensional flow velocity profile model as regards the vertical direction; see Elfrink et al.
(1996). The calculation of the sediment transport rates is based on an intra wave force balance
description that takes into account shear stresses on bottom and wave breaking among others.
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D.4 Morphology

The determination of the seabed level change at each element is based on the Exner equation
(sediment continuity equation) that is written (in horizontal Cartesian coordinates) as follows:

9z, 0S,sr  0S
b= 5S4 25 ASgr, (D.7)

-a _n)W dx dy

where n is the bed porosity, z, is the seabed level, ¢ is time, Sy st, Sy g7 are the total load
transport in the x, y —direction, respectively, and ASst is the sediment source/sink rate. For an
equilibrium description, the source/sink term is set to zero, unless lateral sediment supply is
considered.

Based on the seabed level change rates, the seabed level is updated for every N HD-time step,
where N is a time step factor defined by the user. The new values of the seabed level are
obtained by solving the above differential equation with a forward-in-time difference scheme
as follows:

1 0z
Znew = Zola t+ a7

D.8
1—not Atwp (D8

The morphodynamics are fully integrated with above-mentioned modules allowing the seabed
level changes to provide input for the flow and wave fields so that they are adapted to the new
bathymetrical state.
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Appendix E Datasets

Along the thesis, three data sources have been considered for modelling the wind and wave
characteristics: i) in situ measurements using oceanographic buoys; ii) satellite data, and; iii)
results from numerical models. In this section, these data sources are summarised and the
corresponding data sets from each type are presented. In Table E-6-1, the overall quality and
features of each data source, characterized by its own strengths and shortcomings, is presented.

The highest quality and most accurate metocean data are obtained by in situ measurements. For
example, offshore wind data can be obtained from meteorological masts, oceanographic buoys
and fixed platforms and can be real-time or past measurements. In case of a marine renewable
project development, it is essential to consider the acquisition of such data, which are
accompanied by rather high costs due to the installation, operation, and maintenance, with the
aim of providing an accurate analysis and forecasts, and mitigating involved risks.
Nevertheless, in situ measurements suffer from data incorrectly recorded because of
malfunction of the measuring device (wind sensor), defects in the power supply, errors in the
data entry or during the measurement analysis process, etc. Moreover, such measurements are
affected by external conditions, since these measuring devices operate in a dynamically
changing environment; for example, there can be deviations in the rotation movements (i.e. roll,
pitch and yaw) of the buoy due to the presence of sea waves or currents of high intensity.
Despite the abovementioned deficiencies of in situ measurements, which can reinforce the
presence of outliers, they have historically been considered as the primary reference data source
for the validation and calibration of gridded metocean data as a result of the increased
measurement accuracy; see, for example, Gower (1996).

As in situ measurements are scarce in space and the ocean conditions are rough, remote sensing
techniques play an important role. Remotely-sensed data mainly refers to satellite observations
that can be a considerable supplement to in situ measurements. The most satellite systems that
are used for the quantification of metocean components through the transmission and reception
of specific electromagnetic signals are insensitive to the meteorological conditions, solar
illumination and day/night cycle. Nevertheless, the periodic coverage and spatial resolution
remain a limiting issue for satellite products. A major step in the efficient utilization of satellite
data refers to the enrichment of their corresponding spatiotemporal coverage; this can be
achieved by appropriately blending different satellite (and sensor) products and generating
gridded data sets by applying interpolation techniques. Although the quality of satellite data is
often considered unsuitable for coastal areas due to the large biases near land-sea boundaries,
(see, for example, Carvalho et al. (2014a)) yet, they can provide the basic starting point for the
preliminary (comparative) offshore wind power assessment (Lizuma et al., 2013).

Numerical modelling data sets come from the numerical solution of the equations that govern
the physical processes of metocean parameters in hindcast or forecast mode. In order to run
such models an assimilation procedure, known as analysis, is implemented so that numerous
point measurements around the world are integrated as well. Reanalysis schemes produce long-
term time series that are suitable for climatological analyses. These data are available from
specific providers and they cover over 30-year periods of wind and wave parameters all over
the oceans with a sufficient resolution. The main limitation of numerical models is the
uncertainties involved in the initial and boundary conditions (e.g. from data of low accuracy)
that end up multiplying within the assimilation procedure.
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Table E-6-1. Advantages and disadvantages of metocean data sources used in this thesis.

Data source

Advantages

Disadvantages

In situ measurements

Satellite data

High precision
measurement of physical
quantities

Data provided as time series

Global spatial coverage (of
coarse resolution)
Usually of long duration

Gaps in recordings due to
instrument malfunction
Measurements errors due to
external conditions

Point measurement
coverage

Usually of short duration
Expensive and not easily
accessible

Questionable quality at the
land-sea boundary

Errors when converting the

satellite's original
measurements  to  the
corresponding values of
physical quantity and in
interference patterns

e Periodicity of satellite
tracks

Data from numerical models e Global spatial coverage e Uncertain results due to the

e Long duration model errors (e.0.
e FEasily accessible and parameterization errors, low

usually free of charge accuracy of initial and
e Data provided as time series boundary conditions)

e Subject to errors when
complex topography s
represented with a coarse
spatial resolution

e The next more reliable
source after in situ
measurements

E.1l In situ measurements

In the Greek Seas, a network of eleven oceanographic buoys, deployed in deep water locations,
operates within the framework of the POSEIDON marine monitoring and forecasting system
since 2000 under HCMR (Soukissian and Chronis, 2000). Each buoy is equipped with
meteorological and oceanographic sensors for measuring, among others, temperature,
atmospheric pressure, salinity. The wind measurements are performed at 3 m height above sea
surface with recording period 600 s and frequency 1 Hz, and the measurements are performed
every 3 h. In this thesis, the buoy wind and wave data consist of long-term time series of wind
speed, wind direction, significant wave height, wave period and wave direction for various
locations in the Aegean Sea and with varying recording periods. Today, four buoys, measuring
wind and wave parameters, are operating in the Aegean Sea.

In the Spanish Seas, twelve oceanographic buoys located in deep water depths provide data
from measured parameters similar to the Greek buoys. The monitoring system operates under
the responsibility of the Spanish Port Authority (Puertos del Estado). The measurements are
made at 3 m height above sea surface with a recording interval of 1 h. The corresponding wind
speed time series cover time periods varying between 5 and 18 years. In this thesis, only wind
data have been analysed from the Spanish network from three buoys located in the
Mediterranean part of the Spanish waters.

Wind data from both Greek and Spanish buoys were utilized in offshore wind energy
applications presented in Sections 4.3 and 4.4. Furthermore, wind and wave measurements from
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a Greek buoy location were used for the description of wind and wave climatology,
respectively, and to validate the wave model in Section 5.4 along with an AWAC profiler.

E.2 Satellite data

The satellite data used in this thesis refer to wind speed and direction time series obtained from
the Blended Sea Winds (BSW), developed by the National Climatic Data Center (NCDC) of
the NOAA agency. This dataset consists of blending observations of ocean surface vector winds
and wind stresses from long-term multiple satellites (up to six satellites since June 2002). In
this way, a larger spatial and temporal coverage of the measurements is feasible compared to
the individual satellite data sets. Specifically, NOAA has developed blended satellite products
on a global basis, with 6-h temporal resolution at a spatial resolution of 0.25°x0.25° (~28
kmx28 km). In 1987, there was only one satellite, while in 2000, there were more than five
(SSMIF13, SSMI F14, SSMI F15, TMI, QuikSCAT, AMSR-E). The common characteristic of
the blended product is that it is based on the same retrieval algorithms for all instruments
involved. Regarding the sampling time intervals, they generally decrease as the considered
latitudes increase. Since 2000, the sampling time intervals have decreased to less than 5 h in
the tropics and higher latitudes. From the blended satellite product, the 20-yeartime series
extending from January 1, 1995 to December 31, 2014 with a 6-h time window, at 10 m height
above sea level was extracted and analysed. The wind directions of the BSW product originate
from the NCEP/DOE (Department of Energy) Reanalysis Il and are interpolated onto the BSW
grid. A detailed description of BSW datasets can be found in Zhang et al. (2006). This dataset
was considered in the application of Section 4.3 and can be downloaded from
ftp://eclipse.ncdc.noaa.gov/pub/seawinds/ Sl/uv/.

Evidently, the procedure of blending the ocean surface winds from multiple satellites into a
single product results in inhomogeneous data coverage in the spatial domain; see Fig. 1 of
Soukissian et al. (2017), where the temporal percentage of BSW data coverage for the
Mediterranean Basin is depicted for 1995-2014. The majority of the 0.25°°boxes are sampled
more than 75% of the examined period within each 6-h time window. Specifically, the temporal
percentage is satisfactory in the open sea and offshore areas of all the main sub-basins (i.e.
western Mediterranean, lonian, and Levantine Seas), where the number of measurements is
more than adequate. In the Adriatic Sea and a large part of the Aegean Sea, this number is
decreased, but not drastically, still permitting statistically robust assessments. Areas where the
satellite temporal coverage percentage is very poor (10% of the maximum expected number of
observations), and thus not acceptable for further statistical analysis, are identified in the
northern and central Aegean Sea. The results referring to these areas are disregarded from the
analysis. On the other hand, the data availability near the coasts may also be rather low.
However, the evaluation procedure with buoy measurements showed that the collocated data
sample sizes were adequate in this context.

E.3 Data from numerical models

A global atmospheric reanalysis product was used in this thesis, the ERA-Interim dataset,
released by the European Centre for Medium-Range Weather Forecasts (ECMWEF), with spatial
resolution of approximately 80 km (or 0.75°), covering the geographical area of the
Mediterranean Sea and extending from 1979 to 2014 (Dee et al., 2011). ERA-Interim is the
successor of ERA-40 and stopped its update onwards in time in August 2019. It uses the
ECMWEF Integrated Forecasting System (IFS) Cy31r2 model and the 4-D variational data
assimilation and has many enhancements compared to ERA-40 such as new wave height data
from altimeters, bias correction of satellite radiance data and improved model physics.
Moreover, the data quality provided by ERA-Interim is more homogeneous than its predecessor
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and has additional simulate data. The quality of the ERA-Interim reanalysis wind data has been
extensively verified in other works; see, for example, Alvarez et al. (2014); Carvalho et al.
(2014b)).

The wave-model component of ERA-Interim is based on the WAM model, the spatial
resolution is 110 kmx110km, provided every 6 h, with the directional wave spectra S(w, 6)
being discretized in 24 directions 8 and 30 frequencies w. The quality of the ERA-Interim wave
data has been assessed, among others, by Stopa and Cheung (2014), and was characterized as
a reliable dataset, especially for climate studies.

In Section 4.2, the offshore wind climate is analysed with this dataset. An inherent difficulty in
this analysis is related to the rather low spatial resolution, which renders the obtained results
less accurate near the coasts and in narrow straits and basins. However, this difficulty is not an
intractable hindrance since the aim of this study is to provide a general overview of the long-
term wind climatology over the Mediterranean Sea; an in-depth wind climate analysis in coastal
areas requires different data in order to be successfully accomplished. Sections 4.3 and 4.4
utilized the ERA-Interim wind speed and wind direction data, respectively, while Section 4.5
included a study of the directional extreme value model based on the ERA-Interim wave data.
As regards wind data, the examined time series referred to wind direction at 10 m above sea
level and 6-hour time intervals while concerning wave data, the variables analysed were
significant wave height and mean wave direction at the same temporal resolution. Finally, the
time series of wave statistical parameters used in Section 5.5 as input for the MIKE 21 coupled
model was obtained from the Mediterranean Sea Waves forecast system, which is based on the
third-generation wave model WAM Cycle 4.5.4 (Giinther and Behrens, 2012). The current
velocity time series were obtained from the Med-currents system, whose equations are solved
by an Ocean General Circulation Model based on the NEMO model (version 3.6); for more
details, see Clementi et al. (2017). Both datasets can be accessed at
http://marine.copernicus.eu/services-portfolio/access-to-products/.
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