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Abstract 

Analysing and modelling metocean variables is crucial in various scientific fields with both 

socio-economic and environmental impacts, such as offshore engineering and coastal 

morphology studies. The rapidly emerging sector of marine renewable energy is also largely 

based on the sound analysis and modelling of the metocean climate in a candidate area at 

various temporal scales (e.g. seasonal, interannual). The involved physical processes that 

govern the metocean environment are highly interrelated; linear metocean variables are related 

with either other linear or directional variables and vice versa, rendering their adequate joint 

description a demanding task. On the other hand, their variability aspects are of great interest 

for long-term planning purposes. Furthermore, such phenomena can be realized at entirely 

different time scales; for instance, fatigue of structures placed in the marine environment or 

equilibrium of a coastal zone due to erosion/accretion patterns are affected not only by the 

severe (extreme) environmental conditions acting for a limited time period (e.g. storm events) 

but also by their repeated and continuous action corresponding to a longer-term “fatigue”.  

 

The focus of this dissertation is on the analytic probabilistic modelling and assessment of linear 

and directional metocean random variables aiming at an integrated and feasible approach for 

climate modelling. This task extends to a wide spectrum of less known probabilistic approaches, 

such as linear-directional joint probability models, circular regression and calibration, 

estimation of extreme events taking into account the directional covariate, etc. The modelling 

approaches refer to the long-term scale, but the methods apply equally well on any time scale. 

Moreover, the multitude of alternative models renders the statistical decision procedure a very 

delicate task, since the results of this step play a decisive role in ocean and coastal engineering 

applications.  

 

In the first part, the main theoretical background is presented starting with conventional linear 

and directional univariate and bivariate models, along with some distributions that have been 

recently proved to be efficient for modelling metocean characteristics, while mixtures of 

different univariate models are also considered. The examined bivariate models that are based 

on the corresponding marginal distributions and an appropriate dependence structure, are 

described in detail. Both dimensions (one and two) are addressed by parametric and non-

parametric models. Also, the current availability of multiple data sources leads to the necessity 

of validating and correcting (calibrating) metocean data with emphasis on regression models 

that take into consideration errors in both variables and the presence of outliers, while 

calibration techniques are described for linear and directional features, with the latter being 

rarely adopted in relevant applications despite its significance. As safety, performance and 

economic viability of marine structures are affected by directional features, directionality is 

incorporated in a standard extreme value distribution in order to examine the dependence of 

extreme values of linear metocean variables with a directional covariate. An alternative 

penalised likelihood criterion is proposed to estimate the unknown parameters, which seems to 

be numerically stable for optimization. 

 

In the second part of this thesis, the above statistical methods are implemented on real data sets 

stemming from the disciplines of climate modelling and marine renewable energy; in some case 

studies, new statistical measures and methodologies are proposed. Specifically, long-term time 

series of offshore wind speed and direction are assessed across the Mediterranean Sea in order 

to identify systematic patterns and reveal the general features of the wind climatology patterns, 

with the proposed variability measures revealing further directional attributes of the wind flow. 

As marine energy applications require data of high quality, linear and directional wind and 

wave data obtained from less reliable, but easily-accessible, data sources (satellite data, 

numerical results) are calibrated using in situ measurements as a reference source. To this end, 
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specific robust estimators for linear variables seem to systematically provide better results than 

the ordinary least squares for the examined locations while, after an analytic evaluation, circular 

calibration based on the orthogonal distance outperforms and thus is suggested to be adopted 

in energy assessment studies. Wind speed and direction data are thoroughly examined by means 

of various (parametric) univariate and bivariate models. The evaluation of the bivariate models 

indicates that there is inconsistency of univariate models to the bivariate case in terms of 

performance. Wave energy flux and mean wave direction are also modelled using both 

parametric and non-parametric bivariate distributions to evaluate the validity of the latter and 

investigate the most appropriate for ocean energy applications and optimization of the 

performance of wave energy devices. The extreme events of significant wave height are 

modelled with a directional model in order to identify the dependence of the design values with 

wave direction; this model should be applied for the estimation of extreme wave (and wind) 

loads for any non-symmetric structure operating in the marine environment.  

 

Moving to the coastal environment, the last part addresses wave action in sediment transport 

modelling based on two different approaches under the perspective of frequency and amplitude 

of waves; in the first one, the action of individual high waves, for a short time window, is 

examined on a sandy beach to give insight into the impact of hydrodynamics and circulation on 

sediment transport processes during and after such intense sea states. In the second case, the 

accumulative action of waves throughout a typical year is considered studying the 

corresponding impacts on a sandy beach vulnerable to erosion phenomena, with a profound 

touristic character. For the latter approach, a cost-effective method is introduced combined with 

the philosophy of wave input reduction techniques; the full wave time series is substituted by 

representative wave conditions that are able to initiate or not grain motion. Both case studies 

are based on the use of a widely recognized process-based model that integrates several distinct 

models. 
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Πιθανοθεωρητική μοντελοποίηση γραμμικών και κατευθυντικών μεταβλητών 

ανεμολογικών και κυματικών χαρακτηριστικών με εφαρμογές στο θαλάσσιο περιβάλλον 

 

 

Φλώρα Ε. Καραθανάση 

 

 

Εθνικό Μετσόβιο Πολυτεχνείο 

Σχολή Ναυπηγών Μηχανολόγων Μηχανικών 

Τομέας Ναυτικής και Θαλάσσιας Υδροδυναμικής 

 

Περίληψη 

Οι μετεωρολογικές και ωκεανογραφικές μεταβλητές (metocean variables) διαδραματίζουν 

σημαντικό ρόλο σε μια σειρά από αλληλένδετες φυσικές διεργασίες που απαντώνται στο 

θαλάσσιο περιβάλλον. Η ακριβής γνώση των σημαντικότερων πτυχών του ανεμολογικού και 

κυματικού κλίματος καθώς και η εκτίμηση ακραίων γεγονότων είναι θεμελιώδους σημασίας 

και συμβάλλουν στο μετριασμό κινδύνων είτε αυτές αφορούν κατασκευές είτε την ασφάλεια 

της ανθρώπινης ζωής στη θάλασσα. Ενδεικτικά, ορισμένοι από τους τομείς εφαρμογών που 

είναι στενά συνδεδεμένοι με την καλή γνώση της κλιματολογίας είναι τα έργα θαλάσσιας 

μηχανικής (π.χ., σχεδιασμός και κατασκευή παράκτιων υποδομών), οι υπεράκτιες 

δραστηριότητες (π.χ., πλατφόρμες εξόρυξης πετρελαίου), η διασπορά ρύπων σε αέρα και νερό, 

ο προγραμματισμός πορειών πλεύσης πλοίων, το φαινόμενο διάβρωσης-απόθεσης και οι 

θαλάσσιες ανανεώσιμες πηγές ενέργειας (ΘΑΠΕ), που παρουσιάζουν αυξανόμενο ενδιαφέρον 

για ανάπτυξη τις τελευταίες δύο δεκαετίες.  

 

Γενικά, το μετεωρολογικό και ωκεανογραφικό κλιματικό σύστημα δεν μπορεί να περιγραφεί 

λεπτομερώς λόγω της μη επαρκούς ή ελλιπούς γνώσης των φυσικών νόμων και των 

αναρίθμητων παραγόντων που επηρεάζουν τις αντίστοιχες συνιστώσες του και προκαλούν 

αστάθειες και μη-γραμμικότητες. Επομένως, η ανάγκη εισαγωγής πιθανοθεωρητικών εννοιών 

και στατιστικών μεθόδων είναι αναγκαία για την εν λόγω περιγραφή σε μια συγκεκριμένη 

περιοχή και χρονική περίοδο. Οι συνήθεις γραμμικές τυχαίες μεταβλητές που 

χρησιμοποιούνται για τον χαρακτηρισμό των ανεμολογικών και κυματικών συνθηκών είναι η 

ταχύτητα του ανέμου, και το σημαντικό ύψος κύματος και η μέση περίοδος κύματος, 

αντίστοιχα. Παρόλα αυτά, η περιγραφή αυτή σήμερα θεωρείται αρκετά ελλιπής και για το λόγο 

αυτό, οι αντίστοιχες κατευθυντικές μεταβλητές (δηλ. η διεύθυνση ανέμου και κύματος) θα 

πρέπει επίσης να συμπεριλαμβάνονται για την ολοκληρωμένη περιγραφή του ανεμολογικού 

και κυματικού κλίματος. Η σημασία της κατευθυντικότητας έχει επισημανθεί από πρόσφατες 

μελέτες τόσο για τις ΘΑΠΕ όσο και την παράκτια διάβρωση, που καθιστούν και τους δύο 

κύριους άξονες εφαρμογών της παρούσας διατριβής. 

 

Βασικός στόχος της παρούσας διατριβής είναι η ανάπτυξη μιας ολοκληρωμένης, κατά το 

δυνατόν, προσέγγισης για την πιθανοθεωρητική μοντελοποίηση γραμμικών και κατευθυντικών 

μεταβλητών ανεμολογικών και κυματικών παραμέτρων. Παρόλο που η ανάπτυξη αυτή αφορά 

τις συγκεκριμένες παραμέτρους εντούτοις μπορεί εύκολα να καλύψει και οποιοδήποτε άλλο 

κατευθυντικό περιβαλλοντικό χαρακτηριστικό (π.χ., θαλάσσια ρεύματα). Για την επίτευξη 

αυτού του στόχου, η εργασία εκτείνεται σε ένα ευρύ φάσμα λιγότερο γνωστών 

πιθανοθεωρητικών προσεγγίσεων, όπως είναι τα διδιάστατα μοντέλα (παραμετρικά και μη 

παραμετρικά) γραμμικών και κατευθυντικών μεταβλητών, η παλινδρόμηση και διόρθωση 

κατευθυντικών μεταβλητών, η εκτίμηση ακραίων γεγονότων λαμβάνοντας υπόψη την 

κατευθυντικότητα ως συμμεταβλητή, κ.ά. Τα μαθηματικά εργαλεία και οι μεθοδολογίες που 

παρουσιάζονται, εστιάζονται σε συγκεκριμένες πτυχές του κλίματος που είναι είτε άγνωστες 
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είτε εφαρμόζονται σπάνια. Επίσης, γενικά, ενώ αναφέρονται στη μακροπρόθεσμη κλίμακα, 

βρίσκουν εντούτοις εξίσου καλή εφαρμογή σε οποιαδήποτε χρονική κλίμακα. Επιπρόσθετα, η 

ανάλυση μπορεί εύκολα να επεκταθεί και σε άλλες συναφείς περιβαλλοντικές μεταβλητές, 

όπως είναι το παλιρροιακό εύρος (μεταξύ πλήμμης και ρηχίας), η θερμοκρασία και η 

πυκνότητα αέρα και νερού, η αλατότητα και η ηλιακή ακτινοβολία, καθώς και σε άλλα πεδία 

των γεωεπιστημών, όπως η μετεωρολογία, η γεωλογία, η γεωγραφία και η οικολογία.  

 

Σχετικά με την ανάλυση και μοντελοποίηση μετεωρολογικών και ωκεανογραφικών 

μεταβλητών, η εργασία επικεντρώνεται στους ακόλουθους στόχους: 

 

 ανάπτυξη μιας ολοκληρωμένης προσέγγισης για την μοντελοποίηση γραμμικών και 

κατευθυντικών τυχαίων μεταβλητών μετεωρολογικών και ωκεανογραφικών παραμέτρων 

 επισήμανση νέων χαρακτηριστικών σχετικών με την κατευθυντική μεταβλητότητα του 

ανεμολογικού και κυματικού κλίματος 

 συστηματική μελέτη και σύγκριση διάφορων παραμετρικών μοντέλων για γραμμικές και 

κατευθυντικές μεταβλητές τόσο στη μονοδιάστατη όσο και τη διδιάστατη περίπτωση μέσω 

στατιστικών δεικτών 

 διεξοδική αξιολόγηση παραμετρικών και μη παραμετρικών μοντέλων κατάλληλων για την 

από κοινού περιγραφή γραμμικών και κατευθυντικών μεταβλητών ανεμολογικών και 

κυματικών χαρακτηριστικών 

 ανάπτυξη μεθοδολογίας για την αξιολόγηση λιγότερο αξιόπιστων πηγών δεδομένων που 

λαμβάνουν υπόψη τις έκτροπες παρατηρήσεις σε ένα δείγμα γραμμικών μεταβλητών, 

καθώς και η διόρθωση κατευθυντικών μεταβλητών (η οποία συνήθως δεν εφαρμόζεται στη 

συνηθισμένη πρακτική) 

 χρήση τεχνικών από τη μονομεταβλητή ανάλυση ακραίων τιμών μέσω μοντέλων που 

περιλαμβάνουν την κατευθυντικότητα ως συμμεταβλητή, η εισαγωγή ενός νέου κριτηρίου 

ποινικοποιημένης πιθανοφάνειας για την εκτίμηση των παραμέτρων και η διερεύνηση της 

συμπεριφοράς του μοντέλου με βάση διαφορετικές μεθόδους επιλογής κατωφλίου και απο-

ομαδοποίησης (declustering) ακραίων δεδομένων.  

 

Η εκτίμηση και η πρόβλεψη των πεδίων της μεταφοράς ιζημάτων και των μεταβολών του 

θαλάσσιου πυθμένα λόγω της δράσης των κυμάτων αφορά ένα ακόμα ευρύ πεδίο εφαρμογών 

με ιδιαίτερο ενδιαφέρον και σε άμεση σχέση με τα ανωτέρω μαθηματικά εργαλεία που 

εξετάζονται. Οι μεταβαλλόμενες χρονικές κλίμακες μελέτης των κυματισμών, από την 

εκδήλωση καταιγιδικών συμβάντων μέσα σε κάποιες ώρες έως το τυπικό κυματικό κλίμα σε 

μια παράκτια περιοχή, έχουν ως αποτέλεσμα τη διαφορετική απόκριση των ιζημάτων στην 

παράκτια ζώνη. Για το λόγο αυτό, η μετακίνηση των ιζημάτων εξετάζεται i) λαμβάνοντας 

υπόψη μεμονωμένα καταιγιδικά φαινόμενα που εξελίσσονται σε ένα σύντομο χρονικό 

διάστημα, και ii) την επαναλαμβανόμενη δράση των κυματισμών μέσα σε ένα έτος. 

 

Στο πλαίσιο αυτό, τέθηκαν ορισμένοι πρόσθετοι στόχοι για την παρούσα διατριβή: 

 

 αξιολόγηση των επιπτώσεων των κυματισμών στις διεργασίες ιζηματομεταφοράς κατά τη 

διάρκεια και έπειτα από έντονες καταστάσεις θάλασσας 

 ανάπτυξη μεθοδολογίας για την εκτίμηση και πρόβλεψη του επιπέδου του πυθμένα, η οποία 

είναι αποδοτικότερη ως προς τον υπολογιστικό χρόνο και βασίζεται στη φιλοσοφία των 

τεχνικών μείωσης κυματικών δεδομένων εισαγωγής (wave input reduction techniques), 

λαμβάνοντας υπόψη την αθροιστική δράση των κυμάτων. 

 

Οι δύο ανωτέρω στόχοι αποσκοπούν στην καλύτερη κατανόηση της δυναμικής συμπεριφοράς 

ενός παράκτιου συστήματος, την αναγνώριση μοτίβων διάβρωσης/απόθεσης και την γρήγορη 

και αποδοτική πρόβλεψη αντίστοιχων μελλοντικών τάσεων. Όλες αυτές οι απόψεις είναι 

μεγάλης σπουδαιότητας κατά το σχεδιασμό και τη διαχείριση παράκτιων δραστηριοτήτων, 
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εφόσον βέβαια υπάρχει αξιολόγηση της ικανότητας του μοντέλου αναφορικά με τις τάσεις που 

παρατηρούνται σε σύγκριση με την πραγματική κατάσταση.  

 

Η παρούσα εργασία χωρίζεται σε ένα εισαγωγικό κεφάλαιο, σε τρία κύρια μέρη που αποτελούν 

το βασικό κορμό της διατριβής, καθώς και σε ένα συμπερασματικό κεφάλαιο. Στο εισαγωγικό 

μέρος παρουσιάζεται το γενικότερο πλαίσιο της εργασίας προβάλλοντας τη σημασία των 

μετεωρολογικών και ωκεανογραφικών μεταβλητών σε διάφορους επιστημονικούς κλάδους και 

τη σημασία της μελέτης της κατευθυντικότητας στους τομείς των ΘΑΠΕ και της παράκτιας 

διάβρωσης. Στο πλαίσιο αυτό, περιγράφονται αναλυτικά τα κίνητρα και οι ερευνητικοί στόχοι 

της παρούσας εργασίας, και παρουσιάζεται η συνεισφορά καθώς και οι δημοσιεύσεις σε 

επιστημονικά περιοδικά και διεθνή συνέδρια, που προέκυψαν κατά τη διάρκεια αυτής της 

μελέτης. 

 

Στο πρώτο μέρος, το οποίο αποτελείται από τρία κεφάλαια, αναπτύσσεται το θεωρητικό 

πλαίσιο για τη μοντελοποίηση γραμμικών και κατευθυντικών μεταβλητών. Πιο συγκεκριμένα, 

το Κεφάλαιο 1 περιλαμβάνει τη πιθανοθεωρητική μοντελοποίηση ανεμολογικών και 

κυματικών μεταβλητών για το χαρακτηρισμό του κλίματος με χρήση παραμετρικών 

στατιστικών μοντέλων, μέσω θεωρητικών κατανομών, και μη παραμετρικών μοντέλων, που 

δεν απαιτούν συγκεκριμένες υποθέσεις για τη μορφή του πληθυσμού από τον οποίο προέρχεται 

το δείγμα. Στα πλαίσια της διατριβής, εξετάζονται αναλυτικά πολυάριθμες παραμετρικές και 

μη-παραμετρικές κατανομές για την από κοινού περιγραφή γραμμικών και κατευθυντικών 

μεταβλητών που χαρακτηρίζονται από κάποιο βαθμό εξάρτησης. Η επιλογή των κατάλληλων 

μονομεταβλητών και διμεταβλητών μοντέλων, παραμετρικών ή μη παραμετρικών, βασίζεται 

σε στατιστικά κριτήρια καλής προσαρμογής (goodness-of-fit criteria). Τα αποτελέσματα μιας 

τέτοιας ανάλυσης κρίνονται απαραίτητα στην περίπτωση μελέτης του κλίματος σε μια 

εκτεταμένη περιοχή (π.χ., μια θαλάσσια λεκάνη). Μέσω της χωρικής κατανομής διαφόρων 

στατιστικών μεγεθών (π.χ., μέση τιμή, μεταβλητότητα, συσχέτιση, τάση) και των παραμέτρων 

που χαρακτηρίζουν μια κατανομή είναι εφικτή η περιγραφή της μεταβλητής ενδιαφέροντος. 

Στο Κεφάλαιο 2, αναπτύσσεται το θεωρητικό υπόβαθρο της γραμμικής παλινδρόμησης, η 

οποία εξετάζει τη σχέση μεταξύ δύο ή περισσοτέρων εμπλεκόμενων μεταβλητών. Το μοντέλο 

γραμμικής παλινδρόμησης βασίζεται σε συγκεκριμένες παραδοχές (π.χ. ανεξαρτησία και 

κανονικότητα καταλοίπων) και οποιαδήποτε παραβίασή τους μπορεί να οδηγήσει σε 

εσφαλμένα συμπεράσματα. Από την άλλη πλευρά, τα ανεμολογικά και κυματικά δεδομένα 

συχνά παραβιάζουν ορισμένες από τις υποθέσεις της γραμμικής παλινδρόμησης λόγω 

σφαλμάτων, ανομοιογενών και άλλων παραγόντων επηρεάζοντας την εγκυρότητα των 

συμπερασμάτων (βλ. Παράρτημα Ε). Καθώς η εκτίμηση των παραμέτρων παλινδρόμησης με 

τη γνωστή μέθοδο ελαχίστων τετραγώνων επηρεάζεται από την ύπαρξη έκτροπων 

παρατηρήσεων, είναι σημαντικό να χρησιμοποιηθούν οι ανθεκτικές μέθοδοι παλινδρόμησης 

(robust regression methods) που θεωρούνται κατ’ εξοχήν καταλληλότερες σε περιπτώσεις 

αποκλίσεων από τις υποθέσεις. Τέτοιου είδους ανάλυση κρίνεται αναγκαία στις περιπτώσεις 

π.χ., ύπαρξης πολλαπλών πηγών δεδομένων σε μια περιοχή με σκοπό την καλύτερη δυνατή 

διόρθωση των λιγότερο αξιόπιστων εξ αυτών. Στο τελευταίο κεφάλαιο του πρώτου μέρους 

(Κεφάλαιο 3), εξετάζεται η μοντελοποίηση ακραίων τιμών γραμμικών μεταβλητών 

λαμβάνοντας υπόψη και τη μεταβλητότητα των αντίστοιχων κατευθυντικών μεταβλητών. 

Σημειώνεται ότι η κατανόηση της συμπεριφοράς των ακραίων τιμών μετεωρολογικών και 

κυματικών δεδομένων συναρτήσει της κατευθυντικότητας είναι πολύ σημαντική κυρίως για το 

σχεδιασμό θαλάσσιων κατασκευών. Οι δύο επικρατέστερες θεωρήσεις για την εκτίμηση 

παραμέτρων ασυμπτωτικών κατανομών από δεδομένα είναι: i) η μέθοδος block maxima,  στην 

οποία λαμβάνονται υπόψη οι μέγιστες τιμές διατεταγμένων τυχαίων μεταβλητών, και ii) η 

μέθοδος peaks-over-threshold, στην οποία εξετάζεται η ακολουθία ανεξάρτητων και ισόνομα 

κατανεμημένων τυχαίων μεταβλητών με τους όρους της να υπερβαίνουν ένα δεδομένο επίπεδο. 

Οι ανωτέρω μέθοδοι χρησιμοποιούνται στην ωκεάνια μηχανική για την πρόβλεψη (εκτίμηση) 

τιμών σχεδιάσεως και των αντίστοιχων περιόδων επανεμφάνισης της υπό μελέτη μεταβλητής. 

Στα πλαίσια αυτής της διατριβής, χρησιμοποιείται η δεύτερη θεώρηση, με χρήση της 

κατανομής Generalized Pareto, η οποία θεωρείται η πλέον κατάλληλη για τη συγκεκριμένη 
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περίπτωση. Στο πλαίσιο αυτό, οι παράμετροι της εκφράζονται συναρτήσει της κατευθυντικής 

μεταβλητής μέσω μιας σειράς Fourier. Για τον υπολογισμό των παραμέτρων της κατανομής 

Generalized Pareto προτείνεται η μέθοδος μέγιστης πιθανοφάνειας με την εισαγωγή ενός 

επιπλέον όρου ποινής που εξασφαλίζει σταθερότητα στα αποτελέσματα ανεξαρτήτως των 

όρων της σειράς Fourier. Επίσης, εξετάζονται διάφοροι μέθοδοι για τον υπολογισμό της τιμής 

κατωφλίου και την απο-ομαδοποίηση των δεδομένων, ενώ διερευνάται και η επίδραση 

διαφόρων συνδυασμών στο κατευθυντικό μοντέλο ακραίων τιμών. Τα αριθμητικά 

αποτελέσματα που προκύπτουν από την συστηματική μελέτη της ανωτέρω προσέγγισης σε 

ανεμολογικά και κυματικά δεδομένα στη Μεσόγειο Θάλασσα και εφαρμόζονται στους 

κλάδους της κλιματολογίας και των ΘΑΠΕ παρουσιάζονται στο δεύτερο μέρος (Κεφάλαιο 4).  

 

Το τρίτο και τελευταίο μέρος (Κεφάλαιο 5) είναι αφιερωμένο στο παράκτιο περιβάλλον και 

αντιμετωπίζει ζητήματα διάβρωσης των ακτών σε αμμώδεις παραλίες λόγω της δράσης των 

κυμάτων. Για την επίτευξη των στόχων αυτού του μέρους, έγινε χρήση ενός ενδεδειγμένου 

πακέτου λογισμικού, του MIKE 21/3Coupled Model που αναπτύχθηκε από το Danish 

Hydraulic Institute (DHI). Το μοντέλο αυτό κάνει σύζευξη ενός φασματικού κυματικού 

μοντέλου για την παραγωγή των κυματογενών δυνάμεων, ενός υδροδυναμικού για την 

παραγωγή ρευμάτων και της στάθμης του νερού και ενός μοντέλου ιζηματομεταφοράς για την 

μεταβολή της βαθυμετρίας.. Δύο περιοχές, ευάλωτες σε φαινόμενα διάβρωσης, επιλέχθηκαν 

για τη μελέτη αυτή· η πρώτη είναι η παραλία της Βάρκιζας, στο Σαρωνικό κόλπο, με ένα έντονο 

χαρακτήρα διαμορφωμένο σε ένα αστικό περιβάλλον, και η δεύτερη είναι η ακτή της Σητείας, 

στην ανατολική Κρήτη, μια παραλία με άξονα ανάπτυξης τον τουρισμό. Και στις δύο 

περιπτώσεις, οι συνέπειες των υψηλών ρυθμών διάβρωσης θα ήταν επιζήμιες σε οικονομικό 

και κοινωνικό επίπεδο.  

 

Η εργασία ολοκληρώνεται με τη διατύπωση των σημαντικότερων συμπερασμάτων της 

εργασίας και σχετικών προτάσεων για μελλοντική έρευνα πάνω στους άξονες που εξετάστηκαν 

(Κεφάλαιο 6). 
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Introduction 

Background and research motivation 
 

Metocean (i.e. meteorological and oceanographic) variables play a critical role in a variety of 

highly interrelated physical processes encountered in the marine environment. Among the 

multitude of variables, wind and wave parameters control the air-sea exchange of energy mass 

and momentum and, by extension, various scientific fields, with both socio-economic and 

environmental impacts, are influenced. In this context, the accurate knowledge of the most 

important aspects of wind and wave climate and the reliable estimation of extreme events so as 

to contribute in the reduction of risks, are of fundamental importance. Closely related areas of 

application of climatological research are engineering projects such as the design and 

construction of coastal infrastructures, offshore activities (e.g. platforms for oil extraction), air 

and water pollution dispersion, ship routing and scheduling, sediment transport and coastal 

erosion/accretion, and marine renewable energy sector with an increasing interest for 

development the last two decades.  

 

In general, the metocean climate system cannot be described in full detail since its components 

are controlled by physical laws and countless factors, either adequately or partially known, that 

induce instabilities and nonlinearities. Therefore, the need of probabilistic concepts and 

statistical tools is inevitable in order to describe the metocean climate at a particular location 

and time period. The most typical linear random variables used to characterize wave and wind 

conditions are significant wave height and mean wave period, and wind speed, respectively. 

However, the description of the wave and wind climate is limited if these parameters are solely 

provided; thus, a more integrated assessment is needed in order to define the climate accurately 

in an area of interest. In this context, the corresponding directional variables (i.e. mean wave 

and wind direction) complete the description of the local/regional wave and wind climate and 

should always be incorporated in such analysis. The importance of including directionality has 

been highlighted in many previous studies concerning, for instance, marine renewable energy 

(Porté-Agel et al., 2013; Atan et al., 2016; Hildebrandt et al., 2019) and coastal erosion (Harley 

et al., 2017; Mortlock et al., 2017; Yanalagaran and Ramli, 2018). 

 

Analysing directional data, one of the main aspects in this thesis, is a rather old subject in 

mathematical statistics; however, the advance of this field follows a slow pace compared to the 

statistical analysis of linear data. It can be said that the 1900s was a milestone for the initiation 

of modern directional statistics with Rayleigh (1880; 1905; 1919), Kluyver (1906) and Pearson 

(1905a; 1905b; 1906) studying the uniform random walk on the sphere, and von Mises (1918) 

introducing a distribution on the circle. Yet, after 1953, Fisher, Watson, Mardia, Batschelet and 

other researchers contributed to the essential growth of studying directional data, taking into 

account the curvature of the sample space, via numerous techniques and directional 

distributions. Directional observations are mainly regarded as points (or vectors) either on the 

circumference of the unit circle of ℝ2, or on the surface of the unit hypersphere of ℝ𝑑, 𝑑 ≥ 3, 

referred to as circular and spherical data, respectively. Diverse scientific disciplines deal with 

measurements that are recorded as angles, orientations or directions. Typical examples of 

directional data in physical and life sciences include wind direction measurements in 

meteorology, wave and current directions in oceanography, the study of directions 

(orientations) of birds (animals) and movements of organisms in biology and ecology, 

respectively, the analysis of geological phenomena such as the orientation of rock fractures and 

cores in geology, the determination of the location of an epicentre of an earthquake in earth 

sciences, and the description of the motion of celestial bodies in astronomy. The sense of 

rotation (clockwise, counter clockwise), the arbitrary choice of a unique origin (called zero 

direction), the lack of notion of minimum and maximum values (ranking), the coincidence of 
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the “start” and “end” of their range (i.e. 0 = 2𝜋), and the inherent periodicity (i.e. two points 𝜃 

and 𝜃 + 2𝑘𝜋, 𝑘 = 0,±1,±2,…, represent the same point on the unit circle) are some distinctive 

characteristics of circular data that render their statistical analysis dissimilar from linear data; 

thus, the commonly used statistical tools applied for the dominant linear variables, from the 

calculation of simple descriptive statistics to statistical inference, are not appropriate. 

 

Marine renewable energy and coastal erosion, the two main pillars of application throughout 

this thesis, come under the umbrella of climate change. Climate change mitigation requires 

changes in the global energy system with oceans offering a vast source of renewable energy 

that up to now has not been utilised on a significant level despite its great potential. In order to 

meet the EU targets by 2030 and 2050 as regards energy generation from renewables, the share 

of marine renewable energy in the final energy consumption should be increased. On the other 

hand, the reliable operation, financial viability and local environmental impacts of structures 

and devices deployed in the marine environment require the accurate knowledge of metocean 

climatology and climate variability, and examination of their response under extreme 

conditions. Although nowadays there are plenty of data sources for metocean variables with a 

reasonable spatial and temporal coverage and resolution, the need to reduce uncertainties and 

improve our knowledge of the marine environment is vital so that the associated risks can be 

quantified. Moreover, climate charge is intensifying the problem of coastal erosion, a global 

problem that is threatening human activities (e.g. tourism, commerce), properties and 

infrastructures along with the biotic and abiotic elements of the coastal environment. The 

understanding of sediment transport mechanism in the coastal environment is of paramount 

importance for the accurate prediction of shoreline evolution and seabed changes, a rather 

challenging issue due to the highly complex processes involved. These processes are under 

perpetual changes, which greatly vary in duration and geographic scale, towards an equilibrium 

state. The use of numerical models is widely implemented for the simulation and modelling of 

sediment transport with the possibility to consider different wave conditions and bathymetric 

scenarios and obtain results in a reasonable time frame; see the exhaustive review of 

Papanicolaou et al. (2008).  

 

 

Research aims and objectives 
 

The present thesis attempts to provide a holistic approach for the probabilistic modelling of 

metocean linear and directional variables. The mathematical tools and methodologies presented 

do not provide an exhaustive means for the metocean climate description and modelling but 

focuses on particular aspects that are either not known or less applied. Furthermore, the analysis 

can be easily extended to other relevant metocean variables, such as current, tidal elevation, air 

and sea temperature and density, salinity and solar radiation, and other fields of geosciences as 

well, such as meteorology, geology, geohazards (e.g. earthquakes, floods), geography and 

ecology. 

 

Depending on the objectives and requirements of the application, the spatial scale of interest 

should be at first defined in order to acquire the most suitable, in terms of spatiotemporal 

coverage, data set with the corresponding time series of the linear and directional variables for 

the analysis. Even though large-scale studies (e.g. at the global level) can provide a reliable 

indication of general long-term trends, they are technically unable to resolve the spatial 

variability in a local wind and wave climate scale. In this respect, long-term measurements 

obtained by in situ devices, such as meteorological masts or lidars and oceanographic buoys, 

are preferable for local assessment purposes since they are considered to be the most reliable, 

in terms of quality, data sources, although they usually have a scant temporal extent. On the 

other hand, when a larger region is of interest (e.g. a sea basin, world ocean), the most 

appropriate data sources for deriving climatologies are gridded data coming either from satellite 

observations and other remote sensing instruments (e.g. radar altimeters, scatterometers) or 
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hindcast data, i.e. reanalysis of meteorological data and large-scale atmospheric models 

producing time series of metocean parameters extending back in time many years. In this 

context, the assessment is usually carried out on an annual, seasonal or monthly basis by 

providing the corresponding low-order statistical characteristics of the examined variables, such 

as mean values and variances, along with additional statistical parameters that quantify the 

corresponding temporal variability; see also Figure 0-1. Apart from the identification of the 

climate structure for these temporal scales in an area, the analysis of the longer-term changes 

and relevant variability is also important in real-life situations such as ocean energy economics; 

hence, identification of changes in the multiannual (e.g. decadal) scale can also be examined if 

the duration of the available data set permits it. Regardless of the spatial scale, efficient and 

reliable metocean climate modelling and estimation of the corresponding extremes requires at 

least 30 years of time series (World Meteorological Organization, 2017).  

 

Aim 1. Regression/calibration of linear and directional variables 

However, the gridded/simulated data suffer from various types and degree of uncertainties and 

measurement errors; see Table E-6-1. The horizontal resolution of gridded data is also an 

important parameter, mainly for nearshore areas concerning wind and wave climate studies. Let 

us note that the accurate wind modelling in coastal areas remains an open issue due to the 

influence of many complex factors, such as land/sea distribution and corresponding thermal 

and roughness gradients and local topography. On the other hand, regarding sea waves, the 

intense spatial variations of the coast and bottom depth along with the various mechanisms that 

take place in the coastal zone require high-resolution grids to resolve the small-scale changes. 

Therefore, there is need to use reliable data for validation purposes of the gridded data in case 

they are available in the examined region (Menendez et al., 2014). Based on the knowledge of 

a physical process, relationship functions among involved variables (e.g. modelled and 

measured data) can be derived by means of statistical methods with the most common one the 

regression model. Based on the regression models and in case of multiple data sources in an 

area, (linear and circular) calibration methods are essential to be applied in order to correct as 

much as possible the less accurate data sources. The linear regression model demands the 

fulfilment of certain statistical assumptions (e.g. independent and normally distributed errors), 

since any violation of these assumptions may lead to erroneous results and invalid conclusions. 

Metocean data may often violate some of the assumptions of the linear regression model due to 

data errors and inhomogeneities and other factors, and affect the validity of the prediction or 

inference. Since regression estimates obtained by the method of least squares are affected by 

the presence of outliers, it is important to detect through diagnostic tools potential outliers. 

Another way to deal with outliers and small deviations from the assumptions is the use of robust 

estimators, which can still deliver results of sufficient accuracy. It is also important to mention 

that prior to the use of a data set, the obtained data should be quality checked and validated in 

order to confirm that the data set is correct and can be used for the purposes of the application. 

 

Aim 2: Probabilistic modelling and analysis of linear and directional variables 

Uni- and multivariate probabilistic models are applied to the obtained dataset for the description 

of the assumed population and the accurate estimation of the statistical characteristics of the 

metocean variables. The optimum choice of the model is based on some goodness-of-fit criteria. 

In this way, it is possible to assess the variability of an energy conversion system at a specific 

site and minimize uncertainties in resource estimates during the phase of planning. The joint 

probability analysis, used primarily to make predictions about probabilities of occurrence of 

specific sea-states and wind conditions for dependent random variables, can improve the 

accuracy of the results. Probabilistic modelling of metocean data can be implemented through 

parametric and non-parametric models that permit the characterization of the wind and wave 

climate under different assumptions, both presenting advantages and shortcomings.  

 

When a larger area is of interest, the results of the climate analysis are provided as a spatial 

distribution through standard statistical measures and tools. Such tools include sample 
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descriptive statistics, correlations, trends and significance tests while the parameters of any 

parametric model, either concerning the entire data sample or extreme data, can be also 

presented in the spatial scale. Apart from the standard statistical parameters (mean value, 

variance), the mean annual and inter-annual variability can be provided, along with dependence 

structures of linear, directional and linear-directional variables. Moreover, the quantification of 

climate changes can be provided through trend estimation, where parametric and non-

parametric models can be employed for linear random variables. As regards changes of the 

directional variables, the estimation of a linear trend (slope) for directional time series is not 

feasible. Hence, the angular distance can be provided for different temporal scales (e.g. from 

year to year). Significance testing is necessary to assess whether the obtained trends do exist 

and are not a result of strong (e.g. seasonal) variations. Statistically significant trends can be 

identified via parametric and non-parametric tests, with the latter being more robust in the 

presence of outliers. 

 

Aim 3: Directional extreme value analysis 

Furthermore, the understanding of the behaviour of extreme values coming from metocean data 

is of paramount importance particularly for the design of marine structures. In order to select 

the extremes from the available data sample and fit them with the corresponding extreme value 

distribution model, two approaches can be implemented: i) block maxima approach, where a 

set of maxima (or minima) of the variable is identified by the whole data set and is modelled 

by the Generalized Extreme Value distribution, and ii) the peaks-over-threshold approach, 

where the extreme values are selected over a predefined level and the Generalized Pareto 

distribution is used to fit this extreme value data set. Using one of the above distributions, the 

next step is statistical inference on the data; thus, the return levels, associated with certain return 

periods, can be estimated through the inverse distribution function. However, there are cases 

where the assumption of statistic homogeneity is violated because of directional (and/or spatial 

and temporal) variations, affecting in turn the wind and wave regimes. In this respect, modelling 

of linear metocean variables relies on the variability of directional ones.  

 

Summarizing the above discussion on metocean climate analysis and modelling, the following 

objectives for the present dissertation were set: 

 

 to develop an integrated approach for climate modelling of linear and directional metocean 

random variables; 

 to highlight new features regarding directional climate variability, which has received less 

attention; 

 to study and compare consistently various parametric models for linear and directional 

variables in the univariate and bivariate case through statistical metrics; 

 to evaluate thoroughly parametric and non-parametric models for the joint description of 

linear and directional metocean variables; 

 to provide a robust methodology for the assessment of less reliable data sources, propose 

methods that take into account outlying observations for linear variables, and correct 

directional metocean variables, which is rather uncommon, by identifying the most 

appropriate model; 

 to use extreme value analysis methods that include directionality, introduce a new penalised 

likelihood criterion for parameter estimation, and investigate its behaviour under different 

methods of threshold selection and declustering. 
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Aim 4: Impacts of wave action on sandy beaches 

Estimation and prediction of sediment transport patterns and seabed changes due to wave action 

is the other main goal of this thesis. The varying time scales and amplitude of waves, from 

hours regarding storm waves to seasons regarding the typical wave climate, result in a variable 

behaviour of the sediments in the coastal zone. For this reason, sediment transport is examined 
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i) under the action of individual high waves for a short time window, and ii) under the 

cumulative action of waves over time (e.g. throughout a typical year). Let us note that the 

above-mentioned mathematical/statistical tools can be implemented in the context of sediment 

transport modelling, such as the calibration methods for linear and circular variables.  

 

In this connection, some additional objectives for the present dissertation were set: 

 

 to assess the impacts of waves and circulation on sediment transport processes during and 

after intense sea states; 

 to provide a cost-efficient and replicable method, within the philosophy of wave input 

reduction techniques, for the estimation and prediction of seabed level by considering the 

accumulative action of waves. 

 

For the above purposes, a well-established and integrated software was used, the MIKE 21/3 

Coupled Model developed by the Danish Hydraulic Institute (DHI). The applied modelling 

system couples internally a spectral wave model with a hydrodynamic model and a sediment 

transport model due to the interdependence of the involved complex physical processes. In 

brief, the wave-induced forces computed by a wave model are provided to a hydrodynamic 

model to calculate wave-related phenomena (e.g. wave-induced currents) by considering 

additional processes as well, such as wind forcing. On the other hand, the hydrodynamic model 

returns water levels and currents to the wave model. Then, the sediment transport process is 

controlled by the bed shear stress, which is induced by waves and currents. The total sediment 

transport alters the bathymetry, which in turn, affects the wave and current fields. In this regard, 

two real coastal sites, vulnerable to erosion phenomena, were selected during this research; the 

first one is Varkiza beach, located in the Saronic Gulf, with an intense recreational character in 

an urban environment and the other one is Sitia beach, situated in the eastern part of Crete 

Island, a typical tourism-oriented beach. The consequences of high coastal erosion rates for 

both of them would be detrimental for the local societies and economies.  

 

Both objectives can contribute to understand better the dynamics of a coastal system, identify 

erosion/accretion patterns and predict quickly and efficiently potential future trends, which can 

be valuable for planning and managing coastal activities. Let us remark that it is not expected 

to predict with absolute accuracy the values of seabed level because of the high level of inherent 

uncertainties but rather evaluate the skill of the model as regards the relevant trends compared 

with observations. As was aptly expressed by Klonaris et al. (2018) as regards the tools for 

coastal sediment transport and geomorphology: “The complexity and uncertainty of the various 

processes is so intense that predictions of sediment loads within a factor of 2, or even 5, are 

generally considered as satisfactory, especially for field measurements”. Besides, it has been 

shown that sediment transport formulas may provide good results when compared with 

laboratory experiments (since they rely more on laboratory than field data for 

validation/calibration purposes) but they have an inadequate performance for real-scale 

conditions (Li and Huang, 2013) while numerical models provide poor predictions when they 

are not properly calibrated (Do et al., 2018).  

 

 

Innovative contributions and original publications 
 

Along the research of the above mentioned aims, the following original contributions that worth 

mentioning have been achieved: 

 Structure of an integrated approach for climate modelling of linear and directional metocean 

random variables. In this context, new features regarding directional metocean climate 

variability are highlighted, which are investigated along with the corresponding linear 

variable(s). 
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 Thorough and quantitatively consistent evaluation of parametric and non-parametric models 

for the bivariate case. This analysis revealed that the models that have the best performance 

in the univariate case do not ensure their performance when the joint description of linear 

and directional variables is considered. In addition, the bivariate parametric model of 

Johnson and Wehrly (between linear and directional variables) is recommended to be also 

examined even if non-parametric models are considered. 

 A methodology is proposed to evaluate thoroughly regression/calibration models for the 

correction of linear and directional variables obtained from less reliable data sources. For a 

reliable assessment, a reference data source is required, ideally measurements from 

metocean devices, and concurrent data samples of one-year duration at least. Specific 

regression/calibration models are proposed for both linear and directional metocean 

variables. 

 A new statistical metric for the evaluation of circular calibration models is introduced, 

named root mean error. It is dimensionless and the lower its value, the better the performance 

of the model. 

 A penalised likelihood criterion is introduced for a more stable optimization of the estimated 

parameters of the directional extreme value model based on Generalized Pareto distribution. 

These parameters are expressed by means of a Fourier series expansion and even for higher-

order expressions the solution is stable. A thorough analysis is also performed as regards 

various methods of threshold selection and declustering in order to obtain a better 

understanding of the effects of their different combinations on the estimation of the 

Generalized Pareto parameters and the design values of linear variables taking into account 

directionality effects. 

 A new method is developed based on wave input reduction techniques for the estimation of 

seabed level in order to reduce the computational time of morphological simulations. Apart 

from some basic hydrodynamic parameters and sediment characteristics, the joint 

probabilistic behaviour of wave height and wave period, which are usually available from 

numerical models, is examined and the corresponding combinations that contribute to the 

initiation of sediment movement are identified. This approach is implemented at a sandy 

beach and the obtained results are compared against the results from the full range of wave 

conditions and the situation encountered in reality.  

 

Parts II and III contain various articles about a specific topic that is related with the description 

of metocean climate with applications in the ocean and coastal environment, respectively. 

Therefore, each of the sections of Part II and the last two sections of part III is connected with 

one paper, and in one case with 3 papers, where part of the results are presented.  

 

As regards Part II, the following publications are considered along with the contributions of the 

author: 

P.1. Soukissian, T., Karathanasi, F., Axaopoulos, P., Voukouvalas, E.G., Kotroni, V., 2018. 

Offshore wind climate analysis and variability in the Mediterranean Sea. 

International Journal of Climatology 38: 384–402. 

The author contributed to the development of the statistical analysis and the visualization 

of the results, performed the statistical tests, investigated the directional changes, and 

contributed to the writing of most sections of the original draft, and the review and editing 

of the whole manuscript.  

P.2. Soukissian, T.H., Karathanasi, F.E., 2016. On the use of robust regression methods in 

wind speed assessment. Renewable Energy 99: 1287–1298.  

The author made all the statistical analysis, wrote all the sections, and contributed to the 

review and editing of the whole manuscript.  
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P.3. Soukissian, T., Karathanasi, F. Voukouvalas, E., 2014. Effect of outliers in wind speed 

assessment. Proceedings of the 24th International Offshore (Ocean) and Polar 

Engineering Conference, 1: 362-369, Busan, June 15–20.  

The author made all the statistical analysis, wrote all the sections, and contributed to the 

review and editing of the whole manuscript.  

P.4. Karathanasi, F.E., Soukissian, T.H., Axaopoulos, P.G., 2016. Calibration of wind 

directions in the Mediterranean Sea. Proceedings of the 26th International Ocean and 

Polar Engineering Conference, 1: 491-497, Rhodes, Greece, June 26–July 1. 

The author developed the study work plan, made all the statistical analysis and 

visualization of the results, wrote all the sections, and contributed to the review and editing 

of the whole manuscript.  

P.5. Soukissian, T.H., Karathanasi, F.E., 2017. On the selection of bivariate parametric 

models for wind data. Applied Energy 188: 280–304.  

The author contributed to the statistical analysis, wrote all the sections, prepared the 

visualization of the results, and contributed to the review and editing of the whole 

manuscript.  

P.6. Karathanasi, F., Soukissian, T., Belibassakis, K., Directional extreme value models in 

wave energy applications. Atmosphere, in press. 

The author selected the examined locations and obtained the wave data, made all the 

extreme value and statistical analysis, investigated the penalized maximum likelihood and 

the methods of threshold selection and declustering, made the visualization of the results, 

wrote all the sections, and contributed to the review and editing of the whole manuscript.  

 

Paper P.1 is related to Section 4.2, P.2–P.4 to Section 4.3, P.5 to Section 4.4 and P.6 to Section 

4.5. 

 

As regards Part III, the following publications are considered along with the contributions of 

the author: 

P.7. Belibassakis, K., Karathanasi, F., 2017. Modelling nearshore hydrodynamics and 

circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens 

Gulf. Oceanologia 59(3): 350–36.  

The author set up the coupled model, validated the model results against in situ 

measurements, made the visualization of the results, wrote all the sections, and contributed 

to the review and editing of the whole manuscript.  

P.8. Karathanasi, F., Belibassakis, K., 2019. A cost-effective method for estimating long-

term effects of waves on beach erosion with application to Sitia bay, Crete. 

Oceanologia 61(2):276–290.  

The author contributed to the development of the proposed methodology, set up the 

coupled model, made the visualization of the results, wrote all the sections, and contributed 

to the review and editing of the whole manuscript.  

 

Papers P.7 and P.8 are connected with Sections 5.4 and 5.5, respectively. 

 

 

Thesis outline 
 

The thesis is divided into three major parts. In the first part, comprised of three chapters, the 

theoretical framework for modelling linear and directional variables is developed. Results from 

real data sets stemming from the disciplines of climate modelling and marine renewable energy, 

most of which have been published or submitted for review, are presented in the second part. 

The third part is devoted to the coastal environment and addresses coastal erosion issues on 

sandy beaches due to the wave action. 
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In Chapter 1, the probabilistic modelling of metocean (linear and directional) variables is 

introduced. Parametric and non-parametric models are presented for the description of both 

single linear and directional variables (univariate case) and their joint behaviour (bivariate 

case). The parametric bivariate models are based on the marginal distributions of the 

corresponding linear and directional variables along with a dependence structure and the linear-

directional density is estimated by the use of copulas, with Farlie-Gumbel-Morgenstern (1956, 

1960) and Plackett (1965) families, and the model proposed by Johnson & Wehrly (1978). 

Kernel density estimators are used for the non-parametric univariate and bivariate modelling of 

both linear and directional variables. 

 

Chapter 2 focuses on the calibration problem of linear and directional variables in regression 

analysis. Along with the simple linear model, more efficient estimators, the so-called robust 

estimators, are presented that are less sensitive in the presence of outlying observations, which 

result in violations from the standard assumptions of the former model. Circular regression 

models, which involve both response and predictor circular variables, are introduced along with 

calibration models, that have received lesser attention in the relevant literature. The latter are 

based on distance-based estimators according to the mapping of SenGupta et al. (2013).  

 

Chapter 3 begins with the necessity of describing the extreme behaviour of wind and wave 

features in terms of directionality in the ocean energy technology sector. In this context, the 

foundations of the classical extreme value theory are presented and derivations of the peaks-

over-threshold method are mentioned. Additionally, threshold selection and declustering 

methods are reviewed as their performance is assessed in the next chapter. The directional 

extreme value model, as proposed by Jonathan and Ewans (2007), is also presented and some 

comments are provided as regards the method of estimating the unknown parameters. A new 

rational for the parameter estimation is recommended based on a penalised likelihood criterion, 

which seems to be numerically stable for optimization, while a variety of methods as regards 

threshold selection and declustering are considered to examine their effects on the performance 

of the directional extreme value model.  

 

In Chapter 4, numerical results from each of the above research directions are given in order 

to illustrate the performance of the proposed methods and tools from different metocean data 

sources. The first area of application deals with a thorough wind climate analysis and variability 

by means of statistical tools; new features regarding especially wind climate variability are 

highlighted. The second area is devoted to applications related with ocean energy assessment. 

Parametric univariate and bivariate models are applied to wind speed and direction data and the 

detailed evaluation leads to interesting findings as regards their performance. Parametric and 

non-parametric bivariate models are also evaluated for wave energy flux and wave direction, 

two parameters of high importance for the emerging wave energy sector. Results from the 

calibration of wind speed and direction obtained from different wind data sources are also 

presented by considering in situ measurements the reference source. In this section, a 

methodology is proposed for the assessment of less reliable data sources while a new statistical 

metric is introduced in the calibration of circular variables. The last section of this chapter 

concerns the application of the directional extreme value model, presented in the previous 

chapter, on wave data. Various numerical results are implemented in order to examine the 

effects of this model under the consideration of different methods as regards threshold selection 

and declustering techniques.  

 

In Chapter 5, the coastal environment is examined by means of modelling wave action and 

sediment transport through a dynamically coupled modelling system. Coastal erosion attributed 

to wind-generated waves is examined under two perspectives. The first one considers storm 

events acting for a short time window at a sandy beach, where a plethora of measurements was 

available, that used not only to validate model results but for qualitative comparison purposes 

of seabed level change as well. The second point of view takes into account the entire wave 
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action throughout a typical year and introduces a cost-effective methodology, following the 

rationale of wave input reduction techniques, for the estimation of seabed level. In this respect, 

the wave conditions of the full time series are reduced to some representative conditions based 

on the Shields criterion, used as a determinant for the initiation of sediment movement. The 

results from this technique are compared against the full range of wave conditions and a 

parallelism is made with the real situation encountered at the examined area.  

 

Chapter 6 recapitulates the most important results of this thesis and provides further directions 

for future research.  

 

Finally, in the Annexes, some supplementary concepts and tools are provided. For the sake of 

completeness, the descriptive statistics of directional variables are summarized (Appendix A), 

various statistical tools (e.g. correlation measures, evaluation metrics) implemented in 

metocean climate modelling studies are determined (Appendix B), the maximum likelihood 

(ML) method for the estimation of the Generalized Pareto distribution is shortly presented 

(Appendix C), the basic mathematical formulation of the numerical modelling package used 

for the purposes of this thesis, MIKE 21/3 Coupled Model Flexible Mesh developed by the 

Danish Hydraulic Institute, is defined (Appendix D), and the main categories of metocean data 

sources along with the particular datasets that are analysed in Chapter 4 are provided (Appendix 

E).  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

PART I  

PROBABILISTIC APPROACHES FOR 

MODELLING LINEAR & DIRECTIONAL 

VARIABLES 

  



 

 

 



Chapter 1 

13 

Chapter 1 Construction of probability distributions of linear 

and directional variables 

1.1 General 
 

Metocean conditions have clearly a significant influence on a variety of random physical 

processes that take place in the marine environment and interact with offshore/nearshore 

facilities and coastal infrastructure. Appropriate probability models of metocean variables at a 

location of interest are evidently a useful tool for the estimation of the corresponding conditions 

and accurate quantification of their frequency of occurrence. The existence of long-term data 

are necessary for the probabilistic modelling of metocean variables, which can be obtained by 

measuring devices, remote sensors and numerical simulations (usually hindcasts).  

 

A special application of long-term modelling of metocean variables refers to marine renewable 

energy and coastal morphology, which are the main application areas in the present thesis. 

Metocean variables (e.g. winds, waves, currents) are required for each lifecycle phase of a 

marine energy project, from planning to decommissioning, in order to ensure safety and 

reliability of the design of the structure and high performance during operation, while wave and 

winds dominate in coastal processes and determine to a great extent beach morphology.  

 

In this thesis, the analysis of the metocean variables is confined to linear variables of wind 

conditions and sea states, including wind speed, significant wave height, and wave period 

(energy or peak period) along with the corresponding directional features, i.e. wind direction 

and wave direction, which are of great interest in ocean and coastal engineering applications. 

The probability distributions of the available metocean data offer an essential understanding of 

their characteristics and features, from which several descriptive statistics can be derived to 

summarize the bulk statistical properties of metocean variables at different locations, and their 

use is inevitable due to the randomness of the involved phenomena and the lack of thorough 

knowledge from the data. Since such models cover the entire range of values of the examined 

variable (both body and tail regions), they are preferred in cases a system depends on mean, 

calm and storm conditions (e.g. beach response to wave forcing).   

 

Joint probability distributions of different metocean parameters have received increasing 

attention in order to perform a more realistic analysis due to the inherent complexity of the 

above systems, facilitated by the recent development of numerical models and the direct 

availability of long-term metocean data. Although several research studies have examined joint 

statistical models for metocean variables and different approaches have been recommended for 

the estimation of bivariate probability distributions, there seems to be no general agreement yet. 

For instance, Vanem (2016) concluded that “multivariate modelling of met-ocean conditions 

remains a challenge, even in the bivariate case” in the context of presenting bivariate models 

for wave data. 

 

This chapter deals with the probabilistic modelling of the abovementioned metocean variables 

by means of univariate (parametric and non-parametric) models for both linear and directional 

variables and bivariate (parametric and non-parametric) models for the joint description of 

linear and directional variables, based on the marginal distribution of the corresponding 

variables along with a dependence structure. The main motivations for working on the 

theoretical aspects of this subject are the following: from a recent study (see Section 4.4), it has 

been revealed that there is inconsistency of univariate models when the joint description 

between two variables is examined. Specifically, it will be shown in the applications of Part II 

that the best univariate models of linear variables do not ensure that will also provide the best 

fits when considering the joint description of linear and directional variables. Moreover, there 
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are cases where the parametric bivariate models outperform the non-parametric ones under 

various statistical measures, which gives rise to a more thorough examination when 

probabilistic models are sought for such problems. This justification is strengthened by the 

better statistical properties of the parametric models, their facilitation in making predictions and 

easier estimation of the unknown parameters.  

 

 

1.2 Univariate case 
 

For the accurate description of metocean characteristics, the determination of the corresponding 

probability density function (pdf) is essential in renewable energy applications. For instance, 

the average power of a wind turbine is directly associated with the pdf of wind speed 𝑢𝑤 and 

the corresponding wind turbine power curve 𝑃𝑤(𝑢𝑤), obtained by ∫ 𝑓(𝑢𝑤)
∞

0
𝑃𝑤(𝑢𝑤)𝑑𝑢𝑤. 

Given that the latter parameter is known rather accurately by the wind turbine manufacturer, 

the significance of modelling wind speed as precise as possible is imperative in order to 

minimize wind power estimation errors in the phase of wind resource assessment (Morrissey et 

al., 2010; Ouarda et al., 2015; Rodriguez et al., 2015) and reach safer decisions on wind turbine 

selection and economic evaluation of a wind farm.  

 

In the relevant literature, wind speed is traditionally modelled as a two-parameter Weibull 

distribution mainly due to its simplicity and flexibility; see, e.g. Fyrippis et al. (2010); Rocha 

et al. (2012); Arslan et al. (2014). However, as was noted by Chang (2011), there are many 

limitations, e.g. inefficiency in the accurate modelling of both calm winds (Drobinski et al., 

2015) and wind speeds higher than 14 m/s (Sarkar et al., 2017), while its use has not been 

justified for modelling wind speed data; see also Jourdier and Drobinski (2017). Alternative 

distributions have been proposed in a number of studies that examine a great variety of coastal 

and offshore wind speed regimes, proving their superiority and thus providing better options 

for fitting wind speed. Among them, there are: i) the conventional unimodal distributions with 

three or more parameters that include Kappa (Ouarda et al., 2015; Ouarda et al., 2016), Wakeby 

(Morgan et al., 2011), Johnson SB (Soukissian, 2013), three-parameter Weibull (Stewart and 

Essenwanger, 1978), Gamma (Dong et al., 2013), Lognormal (Alavi et al., 2016a; Alavi et al., 

2016b) and Nakagami (Alavi et al., 2016a; Dookie et al., 2018) distributions; ii) the multimodal 

parametric distributions, which are used to adequately represent wind regimes with 

particularities, such as the mixture distributions including the Weibull mixture (Carta and 

Ramirez, 2007; Akpinar and Kavak Akpinar, 2009; Qin et al., 2012), the Weibull- and 

Lognormal-Generalized Extreme Value mixtures (Kollu et al., 2012), the Normal mixture 

(Chang, 2011), the Gamma mixture (Ouarda et al., 2015) while a variety of heterogeneous 

mixture distributions has been assessed in Shin et al. (2016) and Ouarda and Charron (2018), 

and the Maximum Entropy type distributions (Chellali et al., 2012; Zhang et al., 2014), and iii) 

the non-parametric distributions (Jeon and Taylor, 2012; Zhang et al., 2013; Hu et al., 2016); 

for instance, kernel density estimation is one of the most powerful techniques in terms of non-

parametric estimation. In essence, the kernel is used as a weighting function centred at the data 

points and its extension (around the data points) is defined by a smoothing parameter. A recent 

review of probability distributions for wind speed modelling can be found in Jung and Schindler 

(2019). 

 

Linear variables characterizing the wave climate, such as significant wave height 𝐻𝑆 and peak 

period 𝑇𝑝 derived from a wave spectrum, are essential for the estimation of the design wave 

loads on ocean and coastal structures. For instance, the operational performance of a wave 

energy converter depends on the wave period while its survivability on wave height. In the 

context of analysing these wave parameters through univariate probability models, various 

models have been applied, including among others the Lognormal (Athanassoulis et al., 1994; 

Haver, 1985), the three-parameter Weibull (Burrows and Salih, 1986; Soares and Henriques, 
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1996; Vanem, 2016), the Gamma (Muraleedharan et al., 2009) and the Beta distributions 

(Ferreira and Soares, 1999). 

 

On the other hand, the analysis and modelling of directional (angular) variables belongs to the 

realm of directional statistics that is dissimilar to the traditional linear statistics. In order to 

accurately analyse and model directional data, directional statistical distributions have been 

developed, with the von Mises (vM) distribution being among the most commonly used for 

unimodal samples, which is equivalent to the normal distribution for linear data; see, e.g. 

Mardia and Jupp (2009). For multimodal samples, finite mixtures of vM distributions have been 

successfully applied in many studies with respect to wind and wave direction. For instance, in 

Soukissian (2014), a finite mixture model of vM mixture distributions was applied for 

modelling wind and wave direction from in situ measurements at three locations of deep and 

intermediate water depths off the coasts of the United States. The same distribution type has 

been proposed by Carta et al. (2008a) and Masseran et al. (2013) for the representation of wind 

regimes with varying prevailing wind directions regarding two case studies in the Canary 

Islands (Spain) and the study of wind energy potential for nine wind stations located in 

Peninsular Malaysia, respectively. Another popular technique for generating circular 

distributions is by wrapping a linear distribution around the unit circle, giving rise to many 

wrapped versions of traditional probability models on the real line, such as Wrapped Normal, 

Cauchy (Kato and Jones, 2013), Gamma (Coelho, 2011), Lognormal, Weibull (Sarma et al., 

2011) and 𝑡 −distributions (Pewsey et al., 2007). Alternatives to the classical parametric 

models, for circular data exhibiting multimodality and asymmetry, include the kernel density 

estimators that were firstly considered by Hall et al. (1987) for spherical data, and Bai et al. 

(1988) and Fisher (1989) for directional data. The Wrapped Gaussian kernel model has been 

applied to ocean wave directional data by Athanassoulis and Belibassakis (2002).  

 

 

1.2.1 Parametric and non-parametric models for linear variables 
 

Parametric models 

 

In the context of analysing linear data, parametric models have a dominant role in the 

development of statistical inference. Such models are based on certain assumptions about the 

examined dataset and represent just an approximation of the stochastic dynamics that generated 

it. For instance, a specific pdf model is assumed and the corresponding unknown parameters 

are estimated from the available dataset regarding inference on the unknown density model of 

a linear (or directional) random variable (rv). The precision of the fitting depends on various 

factors (e.g. sample size, area of sampled data, evaluation criteria); however, a failure in the 

assumption leads to completely misleading conclusions.  

 

As already mentioned, the range of mathematical models that have been examined in recent 

years to describe metocean characteristics is broad. Apart from the simple univariate pdfs, the 

mixture distributions, which are a linear combination of two or more pdfs with appropriate 

weighting factors, have already been applied to various scientific fields. In this section, an 

overview of the most representative univariate models, as regards metocean modelling and 

analysis, for linear characteristics is presented. As regards the basic notation of this chapter, 

upper case letters are used for (linear and directional) rv’s (e.g. 𝑋,𝛩) and lower case letters for 

particular realizations of rv’s (e.g. 𝑥, 𝜃).  

 

Gamma (three-parameter) distribution (GAM) 

 

The Gamma distribution is particularly useful for modelling long-tailed and positively skewed 

data that can be encountered among others in hydrology and reliability studies. The pdf of a rv 

𝑋 following a Gamma distribution is  
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 𝑓GAM(𝑥;  𝑐, 𝑎, 𝑏) =
(𝑥 − 𝑐)𝑎−1

Γ(𝑎)𝑏𝑎
𝑒−

𝑥−𝑐
𝑏 , 𝑥 > 𝑐; 𝑎, 𝑏 > 0, 

(1.1) 

 

with 𝑎 and 𝑏 representing the shape and scale parameters, respectively. Also, 𝑐 is the location 

parameter and Γ( ) is the Gamma function defined as Γ(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥d𝑥
∞

0
.  

 

The corresponding cdf is  

 

 𝐹GAM(𝑥;  𝑐, 𝑎, 𝑏) =
1

Γ(𝑎)
𝛾 (𝑎,

𝑥 − 𝑐

𝑏
), (1.2) 

 

where 𝛾 (𝑎,
𝑥−𝑐

𝑏
) is the incomplete Gamma function defined as γ(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡d𝑡

𝑥

0
. 

 

The expected value and the variance of a Gamma rv 𝑋 are 𝜇 = 𝑐 + 𝑎𝑏 and 𝜎2 = 𝑎𝑏2, 

respectively. Several works can be found for the reliable estimation of the unknown parameters 

for the three-parameter gamma distribution; see, e.g. Balakrishnan and Wang (2000); Bowman 

and Shenton (2002); Tzavelas (2009). The Gamma distribution is also a generalization of the 

exponential distribution for 𝑎 = 1.  

 

 

Generalized Extreme Value distribution (GEV) 

 

The pdf of the Generalized Extreme Value distribution is  

 

 𝑓GEV(𝑥;  𝑐, 𝑎, 𝑏) =

{
 

 1

𝑏
𝑒
{−(1+𝑎

𝑥−𝑐
𝑏
)
−1 𝑎⁄

}
(1 + 𝑎

𝑥 − 𝑐

𝑏
)
−(1+𝑎) 𝑎⁄

, for 𝑎 ≠ 0

1

𝑏
𝑒
{−
𝑥−𝑐
𝑏
−𝑒−(𝑥−𝑐) 𝑏⁄ }

,                                             for 𝑎 = 0,

 (1.3) 

 

where 𝑐, 𝑎 ∈ ℝ denote the location and shape parameters, respectively, and 𝑏 > 0 the scale 

parameter and with the following domain of definition 

 

{
1 + 𝑎

𝑥 − 𝑐

𝑏
> 0, for 𝑎 ≠ 0

𝑥 ∈ ℝ,                     for 𝑎 ≠ 0.
 

 

According to the value of the shape parameter, three types of distributions can be derived from 

Eq. (1.3), namely the Gumbel distribution for 𝑎 = 0 (type I), the Fréchet (or inverse Weibull) 

distribution for 𝑎 > 0 (type II), and the Weibull distribution for 𝑎 < 0 (type III); for more 

details, see also Section 3.1. 

 

The corresponding cdf is 

 

 𝐹GEV(𝑥;  𝑐, 𝑎, 𝑏) = { 𝑒
{−(1+𝑎

𝑥−𝑐
𝑏
)
−1 𝑎⁄

}
, for 𝑎 ≠ 0

𝑒{−𝑒
−(𝑥−𝑐) 𝑏⁄ },           for 𝑎 = 0.

 (1.4) 

 

The unknown parameters of the Generalized Extreme Value distribution can be estimated by 

the maximum likelihood method (Katz et al., 2002) and the probability weighted moments 

method (Hosking et al., 1985); for a review of the methods proposed in the relevant literature, 

see Soukissian and Tsalis (2015). 
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Johnson SB distribution (JSB) 

 

The Johnson SB distribution was introduced by Johnson (1949) and is one of the three families 

of the Johnson's system of distributions. The pdf of a Johnson SB variable 𝑋 is 

 

 
𝑓JSB(𝑥;  𝑐, 𝑎, 𝑑, 𝑏) =

𝑑

√2𝜋

𝑎

(𝑥 − 𝑐)(𝑐 + 𝑏 − 𝑥)
𝑒
−
1
2
[𝑎+𝑑ln(

𝑥−𝑐
𝑐+𝑏−𝑥

)]
2

, 

𝑥 ∈ [𝑐, 𝑐 + 𝑏]; 𝑏, 𝑑 > 0; 𝑐, 𝑎 ∈ ℝ, 

(1.5) 

 

𝑐 and 𝑏 denote, respectively, the location and scale parameters, while 𝑎 and 𝑑 affect the shape 

of the distribution. In particular, skewness is increased while 𝛼 is increasing, in absolute value, 

and kurtosis is increased with increasing 𝑑. Eq. (1.5) is characterized by a bounded domain of 

the variable and flexibility in the distribution form due to the two shape parameters, rendering 

it applicable in many fields like meteorology (Tang and Lin, 2013) and hydrology (Wakazuki, 

2013; Cugerone and De Michele, 2015). 

 

The corresponding equation of the cdf is  

 

 𝐹JSB(𝑥;  𝑐, 𝑎, 𝑑, 𝑏) = Φ(𝑎 + 𝑑ln (
𝑥 − 𝑐

𝑐 + 𝑏 − 𝑥
)), (1.6) 

 

with Φ(∙) denoting the Gaussian cdf defined as Φ(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 d𝑡
𝑥

0
. 

 

The parameters of this distribution can be estimated by applying the maximum likelihood 

method, the method of moments, the percentile method and (linear or nonlinear) regression 

methods (Phien and Jivajirajah, 1984; Scolforo et al., 2003; Zhang et al., 2003). 

 

 

Lognormal (three-parameter) distribution (LGN) 

 

The three-parameter Lognormal distribution is useful for modelling positively skewed and 

long-tailed data. The pdf of a Lognormal variable 𝑋 is 

 

 𝑓LGN(𝑥;  𝑐, 𝑎, 𝑏) =
1

(𝑥 − 𝑐)𝑎√2𝜋
𝑒
{−
[𝑙n(𝑥−𝑐)−𝑏2]

2𝑎2
}
, 𝑥 ∈ (𝑐,∞); 𝑎 > 0; 𝑏 ∈ ℝ, (1.7) 

 

with 𝑎, 𝑏 and 𝑐 representing the shape, scale and location parameters respectively.  

 

The corresponding cdf is 

 

 𝐹LGN(𝑥;  𝑐, 𝑎, 𝑏) = Φ(
ln(𝑥 − 𝑐) − 𝑏

𝑎
). (1.8) 

 

The expected value and the variance of a Lognormal rv 𝑋 are 𝜇 = 𝑐 + 𝑒𝑏+𝑎
2 2⁄  and 𝜎2 =

𝑒2𝑏+𝑎
2
(𝑒𝑎

2
− 1), respectively. Mathematical properties of this distribution are described in 

Burges et al. (1975) and Johnson et al. (1995). The estimation techniques that are frequently 

used for the parameter estimation of the Lognormal distribution are maximum likelihood 

(Stevens, 1992; Hirose, 1997; Basak et al., 2009) and method of moments (Cohen and Whitten, 

1980; Hoshi et al., 1984). 
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Kappa distribution (KAP)  

 

The four-parameter Kappa distribution, introduced by Hosking (1994), is a generalization of 

many other three-parameter distributions; for instance, for 𝑑 = 1 and 𝑎 ≠ 0 the Generalized 

Pareto model is obtained, for 𝑑 = 0 and 𝑎 ≠ 0 the Generalized Extreme Value model, for 𝑑 =
−1 and 𝑎 ≠ 0 the Generalized Logistic distribution and for 𝑑 = 1 and 𝑎 = 0 the Exponential 

distribution. Its pdf is defined as 

 

 𝑓KAP(𝑥;  𝑐, 𝑎, 𝑑, 𝑏) =
1

𝑏
(1 −

𝑎(𝑥 − 𝑐)

𝑏
)

(1 𝑎⁄ )−1

[𝐹KAP(𝑥)]
1−𝑑 , 𝑏 > 0, (1.9) 

 

with the following domain of definition 

 

{
 
 

 
 
𝑐 + 𝑏(1 − 𝑑−𝑎) 𝑎 ≤ 𝑥 ≤ 𝑐 + 𝑏 𝑎⁄⁄ , if 𝑑 > 0, 𝑎 > 0;

𝑐 + 𝑏log𝑑 ≤ 𝑥 < ∞,               if 𝑑 > 0, 𝑎 = 0;

𝑐 + 𝑏(1 − 𝑑−𝑎) 𝑎 ≤ 𝑥 < ∞⁄ ,       if 𝑑 > 0, 𝑎 < 0;
−∞ < 𝑥 ≤ 𝑐 + 𝑏 𝑎⁄ ,               if 𝑑 ≤ 0, 𝑎 > 0;
−∞ < 𝑥 < ∞,                     if 𝑑 ≤ 0, 𝑎 = 0;
𝑐 + 𝑏 𝑎⁄ ≤ 𝑥 < ∞,                 if 𝑑 ≤ 0, 𝑎 < 0.

 

 

The corresponding cdf is 

 

 𝐹KAP(𝑥;  𝑐, 𝑎, 𝑑, 𝑏) = [1 − 𝑑 (1 −
𝑎(𝑥 − 𝑐)

𝑏
)

1 𝑎⁄

]

1 𝑑⁄

. (1.10) 

 

By applying the method of L-moments for the estimation of the unknown parameters, the kappa 

distribution has been frequently used in hydrological studies including extreme value analysis 

(Park and Jung, 2002; Murshed et al., 2014; Kjeldsen et al., 2017). 

 

 

Wakeby distribution (WAK) 

 

The five-parameter Wakeby distribution, initially introduced by Landwehr et al. (1979a); 

Landwehr et al. (1979b), is a generalization of other less complex, such as Generalized Pareto 

and three-parameter Exponential distributions, and it has a great variety of shapes making it 

particularly useful for various applications. The pdf is given by using the following relation 

provided by Johnson et al. (1995)  

 

 
𝑓WAK(𝑥;  𝑐, 𝑔, 𝑎, 𝑑, 𝑠) =

1 − (1 − 𝐹WAK(𝑥))
𝑠+1

𝑔(1 − 𝐹WAK(𝑥))
𝑎+𝑠

+ 𝑑
, 𝑎 + 𝑠 > 0 or 𝑎 = 𝑑 = 

𝑠 = 0; 𝑎 = 0, if 𝑔 = 0; 𝑠 = 0, if d = 0; 𝑑 ≥ 0; 𝑎 + 𝑠 ≥ 0; 𝑔 + 𝑑 ≥ 0, 

(1.11) 

 

with the following domain of definition 

 

{
𝑐 ≤ 𝑥 < ∞,            if 𝑠 ≥ 0, 𝑑 > 0;

𝑐 ≤ 𝑥 ≤ 𝑐 +
𝑔

𝑎
−
𝑑

𝑠
, if 𝑠 < 0 or 𝑑 = 0.

 

 

where 𝑐, 𝑔, 𝑎 are the shape parameters and 𝑑, 𝑠 are the location parameters. 

 



Chapter 1 

19 

The corresponding cdf has no explicit analytic form and is defined by means of its quantile 

function  

 

 𝑥(𝐹) = 𝑐 +
𝑔

𝑎
[1 − (1 − 𝐹)𝑎] −

𝑑

𝑠
[1 − (1 − 𝐹)−𝑠], 𝐹 = 𝐹WAK(𝑥). (1.12) 

 

The main techniques for the estimation of the parameters are maximum likelihood, method of 

moments and probability weighted moments (Griffiths, 1989; Rao and Hamed, 2000) while 

Öztekin (2011) proposed least squares method.  

 

 

Weibull (three-parameter) distribution (WEI) 

 

The three-parameter Weibull distribution, a generalization of the two-parameter Weibull 

distribution, has an extended range of applications due to its high flexibility; for an extensive 

review of applications; see Murthy et al. (2004). The pdf of a three-parameter Weibull random 

variable 𝑋 is 

 

 𝑓WEI(𝑥;  𝑐, 𝑎, 𝑏) =
𝑎

𝑏
(
𝑥 − 𝑐

𝑏
)
𝑎−1

𝑒
−(
𝑥−𝑐
𝑏
)
𝑎

, 𝑥 ∈ [𝑐,∞); 𝑎, 𝑏 > 0; 𝑐 ∈ ℝ, (1.13) 

 

with 𝑎, 𝑏 and 𝑐 representing shape, scale and location parameters, respectively. The 

corresponding cdf is 

 

 𝐹WEI(𝑥;  𝑐, 𝑎, 𝑏) = 1 − 𝑒
−(
𝑥−𝑐
𝑏
)
𝑎

. (1.14) 

 

The most common method for the estimation of the Weibull parameters is the maximum 

likelihood estimation (Balakrishnan and Kateri, 2008) although some deficiencies have been 

identified (Cousineau, 2009). Alternative estimation methods are the quantile estimation (Wang 

and Keats, 1995), the moment estimation (Cran, 1988; Bartolucci et al., 1999; Akdağ and Guler, 

2018) and kernel density estimation (Marković et al., 2009).  

 

Now, let us assume that the pdf 𝑓(𝑥) of a rv 𝑋 is expressed in the form of a linear mixture as 

follows 

 

𝑓(𝑥) =∑𝜔𝑗𝑓(𝑥; 𝜗𝑗)

𝜅

𝑗=1

, 

 

where the quantities 𝜔𝑗, with ∑ 𝜔𝑗
𝑘
𝑗=1 = 1 and 0 < 𝜔𝑗 < 1, for 𝑗 = 1,… , 𝑘, denote the 

weighting factors corresponding to the components of the linear mixture, 𝜗𝑗 is the set of 

parameters corresponding to the 𝑗 −th pdf and 𝑓(𝑥; 𝜗𝑗) is the pdf of the 𝑗 −th component of the 

mixture. The following mixture distributions refer to this type of models. The unknown 

parameters of these distributions can be estimated by maximizing the corresponding log-

likelihood function under the restriction that ∑ 𝜔𝑗
𝑘
𝑗=1 = 1. 

 

 

Gamma-Weibull mixture distribution (GW) 

 

The pdf of a Gamma-Weibull distribution is given by 

 



Univariate case 

20 

 

𝑓GW(𝑥; 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜔)

= 𝜔
𝑥𝑎1−1

Γ(𝑎1)𝑏1
𝑎1
𝑒
−
𝑥
𝑏1 + (1 − 𝜔)

𝑎2
𝑏2
(
𝑥

𝑏2
)
𝑎2−1

𝑒
−(

𝑥
𝑏2
)
𝑎2

, 
(1.15) 

 

with 𝜔 ∈ (0,1) denoting the weighting parameter. The corresponding cdf is 

 

 𝐹GW(𝑥; 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜔) = 𝜔𝐹GAM(𝑥; 𝑎1, 𝑏1) + (1 − 𝜔)𝐹WEI(𝑥; 𝑎2, 𝑏2), (1.16) 

 

with 𝑐 = 0 from Eqs. (1.2) and (1.14), and 𝜔 ∈ (0,1) the weighting parameter. 

 

 

Truncated Normal mixture distribution (NN) 

 

For a normal density function with location and scale parameters 𝑐, 𝑏, respectively, i.e. 

 

 𝑓N(𝑥;  𝑐, 𝑏) =
1

√2𝜋𝑏2
𝑒
−
(𝑥−𝑐)2

2𝑏2 , 𝑥 ∈ ℝ; 𝑏2 > 0; 𝑐 ∈ ℝ, (1.17) 

 

the singly truncated (from below) normal mixture distribution (for 𝑥 ≥ 0) is defined as follows, 

 

 𝑓NN(𝑥; 𝑐1, 𝑏1, 𝑐2, 𝑏2, 𝜔) = 𝜔
𝜑(𝑥; 𝑐1, 𝑏1)

𝐼(𝑐1, 𝑏1)
+ (1 − 𝜔)

𝜑(𝑥; 𝑐2, 𝑏2)

𝐼(𝑐2, 𝑏2)
, (1.18) 

 

with 𝜔 ∈ (0,1) denoting the weighting parameter and 𝐼(𝑐, 𝑏) = ∫ 𝜑(𝑥; 𝑐, 𝑏)d𝑥
∞

0
. The 

corresponding cdf is given by 

 

 

𝐹NN(𝑥; 𝑐1, 𝑏1, 𝑐2, 𝑏2, 𝜔)

= 𝜔∫
𝜑(𝑥; 𝑐1, 𝑏1)

𝐼(𝑐1, 𝑏1)
d𝑥

𝑥

0

+ (1 − 𝜔)∫
𝜑(𝑥; 𝑐2, 𝑏2)

𝐼(𝑐2, 𝑏2)
d𝑥.

𝑥

0

 
(1.19) 

 

 

Weibull (two-parameter) mixture distribution (WW) 

 

The pdf of the Weibull mixture distribution is 

 

 

𝑓WW(𝑥; 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜔) = 𝜔
𝑎1
𝑏1
(
𝑥

𝑏1
)
𝑎1−1

𝑒
−(

𝑥
𝑏1
)
𝑎1

 

+(1 − 𝜔)
𝑎2
𝑏2
(
𝑥

𝑏2
)
𝑎2−1

𝑒
−(

𝑥
𝑏2
)
𝑎2

, 

(1.20) 

 

where 𝑎1, 𝑏1 are, respectively, the shape and scale parameters of the first Weibull component, 

𝑎2, 𝑏2 are the corresponding parameters of the second Weibull component and 𝜔 is the 

weighting parameter. The corresponding cdf is given by 

 

 𝐹WW(𝑥; 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜔) = 𝜔𝐹WEI(𝑥; 𝑎1, 𝑏1) + (1 − 𝜔)𝐹WEI(𝑥; 𝑎2, 𝑏2), (1.21) 

 

with 𝑐 = 0 from Eq. (1.14) and 𝜔 ∈ (0,1) the weighting parameter. 

 

 

Weibull-Generalized Extreme Value mixture distribution (WGEV) 

 

The Weibull-Generalized Extreme Value mixture distribution is defined as follows 
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𝑓WGEV(𝑥; 𝑎1, 𝑏1, 𝑐, 𝑎2, 𝑏2, 𝜔) = 𝜔
𝑎1
𝑏1
(
𝑥

𝑏1
)
𝑎1−1

𝑒
−(

𝑥
𝑏1
)
𝑎1

 

+(1 − 𝜔)
1

𝑏2
𝑒
{−(1+𝑎2

𝑥−𝑐
𝑏2

)
−1 𝑎2⁄

}
(1 + 𝑎2

𝑥 − 𝑐

𝑏2
)
−(1+𝑎2) 𝑎2⁄

, 

(1.22) 

 

where 𝑎1, 𝑏1 are the shape and scale parameters, respectively, of the Weibull distribution, and 

𝑎2, 𝑏2 and 𝑐 are the shape, scale and location parameters, respectively, of the Generalized 

Extreme Value distribution. Its cdf is 

 

 
𝐹WGEV(𝑥; 𝑎1, 𝑏1, 𝑐, 𝑎2, 𝑏2, 𝜔) = 𝜔𝐹WEI(𝑥; 𝑎1, 𝑏1) 

+(1 − 𝜔)𝐹GEV(𝑥; 𝑐, 𝑎2, 𝑏2), 
(1.23) 

 

with 𝑐 = 0 from Eq. (1.14) and 𝜔 ∈ (0,1) the weighting parameter. 

 

 

Non-parametric models 

 

Non-parametric methods, contrarily to the parametric ones, do not rely on strong parametric 

assumptions but rather on fewer, or less stringent, conditions, rendering this estimation method 

more flexible since the pdf is constructed according to the information derived from the 

available data sample and not defined by a finite set of parameters. Non-parametric techniques 

tend to be preferred in cases where the pdf of the data is unknown or cannot be easily 

approximated (e.g. due to the small sample size), and can be useful when analysing data with 

outliers, which might be nontrivial with a parametric approach. Nevertheless, non-parametric 

methods are not as optimal as parametric methods in case the assumptions of the latter ones 

hold.  

 

Kernel density function (kdf), as a member of a non-parametric approach, is widely applied in 

non-parametric statistical estimation in data analysis and other research areas. The main idea of 

the kernel function is to act as a local weighting by attributing at each random variable 𝑋 a 

weight based on the distance of observations 𝑦𝑖, 𝑖 = 1,… , 𝑛, from a random sample to each 

fixed point 𝑥 ∈ ℝ; the local weight increases with decreasing distance. In the univariate case 

and given 𝑛 observations 𝑦𝑖, 𝑖 = 1,… , 𝑛, the general form of the standard kdf, originated from 

Rosenblatt (1956), is defined as  

 

 𝑓K(𝑥;  𝑦, ℎ) =
1

𝑛ℎ
∑𝐾(

𝑥 − 𝑦𝑖
ℎ

)

𝑛

𝑖=1

, (1.24) 

 

where 𝐾(∙) is the kernel (or window) function determining the shape of the weighting function, 

ℎ is the bandwidth (smoothing parameter or window width) of the estimator, which is a positive 

parameter that represents the variance of the kernel and thereby controls the smoothness of the 

estimator, and 𝑛 is the sample size. 

 

Any symmetric function that satisfies the following conditions can be used as a kernel function: 

 

i. 𝐾(𝑥; 𝑦, ℎ) ≥ 0 for all 𝑥, i.e. is a non-negative function 

ii. ∫𝐾(𝑥; 𝑦, ℎ)d𝑥 = 1  

iii. ∫𝑥𝐾(𝑥; 𝑦, ℎ)d𝑥 = 0, because of symmetry 

iv. 0 < ∫𝑥2𝐾(𝑥; 𝑦, ℎ)d𝑥 < ∞, i.e. is of second order. 
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The most commonly used symmetric kdfs are the following: Gaussian, Uniform, Triangular, 

Epanechnikov and Biweight. However, such kernels are ideal provided that the support of target 

density 𝑓 is unbounded; otherwise 𝑓K is biased at the boundaries, also known as ‘spill-over’ 

effect. To overcome this problem in the case of bounded (from below or/and above) data, where 

standard symmetric kernels tend to underestimate the density at the boundaries, various 

methods have been suggested; for instance, transformations techniques (Marron and Ruppert, 

1994), reflection and replication methods (Schuster, 1985; Muller, 1991; Karunamuni and 

Zhang, 2008), boundary kernels (Gasser et al., 1985) and adaptive kernels (Botev et al., 2010); 

a list of relevant methods on this topic can be also found in Karunamuni and Alberts (2005) and 

Marchant et al. (2013). In this thesis, the approach of using asymmetric (skewed) kernel 

functions is followed to construct the kdfs, i.e. kernels that matches with the support of 𝑓. 

 

The most popular asymmetric kernel estimators include the Gamma kernel estimators (Chen, 

2000), the Beta kernel estimators (Brown and Chen, 1999), the Inverse and the reciprocal 

inverse Gaussian kernel estimators (Scaillet, 2004) and the Birnbaum–Saunders kernel 

estimators (Jin and Kawczak, 2003). Moreover, Silverman (1986) has proposed Lognormal 

(and Gamma) kernels, with the shape parameter controlling the smoothing (Igarashi, 2016). 

Among the most appealing properties of these kernels are the increased precision of the density 

estimation close to the boundary, they are boundary bias free (i.e. the bias is of the order of 

𝑂(ℎ) near the boundaries and inside the support) and their adaptive smoothing by variable 

kernel shapes according to the location of the data points 𝑦; more details on asymmetric kernels 

can be found in the recent book of Hirukawa (2018).  

 

In the case of asymmetric kernels, the following additional requirements must be fulfilled so 

that the estimator of 𝑓(𝑥) remains asymptotical unbiased as 𝑛 → ∞ and 𝑛ℎ → ∞, for all 𝑥 that 

belong to the support of 𝑓(𝑥), say 𝑆: 

 

i. lim
ℎ→0

∫ 𝐾(𝑥; 𝑦, ℎ)d𝑦 = 1
𝑆

 

 

ii. lim
ℎ→0

∫ 𝐾(𝑥; 𝑦, ℎ)(𝑦 − 𝑥)d𝑦 = 0
𝑆

 

 

iii. lim
ℎ→0

∫ 𝐾(𝑥; 𝑦, ℎ)(𝑦 − 𝑥)2d𝑦 = 0
𝑆

 

 

As mentioned in Athanassoulis and Belibassakis (2002), the positioning parameter 𝑦 is the 

solution of 

 

 
𝜕𝐾(𝑥)

𝜕𝑥
= 0, (1.25) 

 

i.e. is defined as the most probable value of the kernel function, while the bandwidth parameter 

ℎ is the standard deviation of the kdf with respect to 𝑥. Let it be noted that regarding the 

implementation of the kdfs, the positioning parameter 𝑦 coincides with the values of the data 

sample while the bandwidth ℎ can be derived by applying the L2-distance criterion. 

 

Based on the two-parameter Gamma distribution (with 𝑐 = 0 in Eq. (1.1)), the expressions of 

the shape and scale parameters, 𝑎 and 𝑏, respectively, of the Gamma kernel in terms of 𝑦 and 

ℎ are the following  

 

 𝑎 =
1

2
[2 + (

𝑦

ℎ
)
2
+√(2 + (

𝑦

ℎ
)
2
)
2

− 4] and 𝑏 =
𝑦

𝑎−1
. (1.26) 
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In a similar way, the Lognormal kernel, defined by means of the two-parameter Lognormal 

distribution (with 𝑐 = 0 in Eq. (1.7)), has the following expressions for the shape and scale 

parameters, respectively, 

 

 𝑎 = ln(𝐷𝑦) and 𝑏 = √ln(𝐷), (1.27) 

 

where 𝐷 is the positive root of the equation 𝐷4 − 𝐷3 − (
ℎ

𝑦
)
2
= 0. 

 

For sufficiently large 𝑛, the accuracy of the kernel density estimation is more sensitive to the 

bandwidth compared to the kernel function. The degree of smoothness of the estimated density 

is determined by the bandwidth; a small bandwidth yields a tight fit with spikes at the 

observations while a large bandwidth provides a smooth fit. In order to find the optimal 

bandwidth so that the obtained kernel density can adequately represent the underlying 

population, it is necessary to select a measure of distance that assesses the performance of 𝑓 by 

comparing it with the true density 𝑓. Although many methods have been recommended, the 

non-parametric statistical community agrees that there may not be a convergence as regards the 

perfect method for the selection of the optimal bandwidth. The generally accepted performance 

criteria are the integrated squared error (ISE) and its expected value, the mean integrated 

squared error (MISE), given by 

 

 ISE = ∫{𝑓K(𝑥) − 𝑓(𝑥)}
2d𝑥 and MISE = 𝐸[∫{𝑓K(𝑥) − 𝑓(𝑥)}

2d𝑥], (1.28) 

 

respectively.  

 

Two different classes can be roughly distinguished, which asymptotically coincide: i) the cross-

validation methods that try to minimize the former measure, and ii) the plug-in methods that 

try to minimize the latter measure; see also the review of Heidenreich et al. (2013). In the case 

of asymmetric kernels, the plug-in methods are not directly applicable because they require a 

pilot estimate of the bandwidth; for more details, see Loader (1999) and Jin and Kawczak 

(2003). Nevertheless, Hirukawa and Sakudo (2014) proposed the implementation of plug-in 

methods for choosing the smoothing parameter using the Gamma and the Modified Gamma 

kernels. On the other hand, the cross-validation methods for asymmetric kernels have been 

applied among others by Jeon and Kim (2013) and Marchant et al. (2013). 

 

 

1.2.2 Parametric and non-parametric models for circular variables 
 

Parametric models 

 

The von Mises (vM) distribution was introduced by von Mises (1918) and is also referred to as 

circular normal distribution due to its analogy to the Gaussian distribution for linear variables. 

The vM distribution belongs to the exponential family and is defined as follows: 

 

 𝑓vM(𝜃;  𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
𝑒𝜅 cos(𝜃−𝜇), 𝜃 ∈ [0, 2𝜋), 𝜅 ≥ 0, 𝜇 ∈ [0, 2𝜋), (1.29) 

 

where 𝐼0(𝜅) is the modified Bessel function of the first kind and zero order, i.e. 𝐼0(𝜅) =
1

2𝜋
∫ 𝑒𝜅 cos𝜃d𝜃
2𝜋

0
 (or using a power series expansion ∑

1

𝑙!2
(
𝜅

2
)
2𝑙

∞
𝑙=0 ), 𝜇 is the location parameter 

and 𝜅 is the concentration parameter around 𝜇. The corresponding cdf does not have closed 

form and is calculated by numerical integration of Eq. (1.29), i.e. 
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𝐹vM(𝜃;  𝜇, 𝜅) = ∫ 𝑓vM(𝜔;  𝜇, 𝜅)d𝜔
𝜃

0

=
𝜃𝐼0(𝜅) + 2∑

𝐼𝑝(𝜅) sin 𝑝(𝜃 − 𝜇)
𝑝

∞
𝑝=1

2𝜋𝐼0(𝜅)
, 𝜃 ∈ [0, 2𝜋). 

(1.30) 

 

For 𝜅 = 0, the circular Uniform distribution is obtained, which is invariant under rotation and 

reflection (Mardia and Jupp, 2009). The pdf of this circular distribution is  

 

 𝑓U(𝜃) =
1

2𝜋
, 𝜃 ∈ [0, 2𝜋). (1.31) 

 

For the estimation of the von Mises parameters, usually the maximum likelihood method is 

performed, which is rather straightforward. An alternative method is to use non-parametric 

techniques, e.g. based on kernel approaches, as is presented at the end of this subsection. 
 

From the wrapping of the Cauchy distribution around the unit circle, it results the wrapped 

Cauchy distribution with pdf 

 

 
𝑓WC(𝜃;  𝜇, 𝜌) =

1

2𝜋
{1 + 2∑𝜌𝑝 cos 𝑝(𝜃 − 𝜇)

∞

𝑝=1

} , 𝜃 ∈ [0, 2𝜋); 𝜅 ≥ 0, 

𝜇 ∈ [0, 2𝜋), 

(1.32) 

 

where 𝜇 is the location parameter and 𝜌 controls the concentration of the model. This 

distribution is symmetric and unimodal and has some desirable mathematic properties as 

discussed in Kent and Tyler (1988). Based on the trigonometric moments in the characteristic 

function of 𝛩, a simplified expression of Eq. (1.32) is obtained by  

 

 𝑓WC(𝜃;  𝜇, 𝜌) =
1 − 𝜌2

2𝜋[1 + 𝜌2 − 2𝜌 cos(𝜃 − 𝜇)]
, 𝜌 ∈ [0,1]. (1.33) 

 

𝑊𝐶( 𝜇, 𝜌) tends to the Uniform distribution as 𝜌 → 0 while as 𝜌 → 1, it tends to a point 

distribution at 𝜇. 

 

An analogous wrap around 𝑁(𝜇, 𝜎2) gives the wrapped Normal distribution 𝑊𝑁( 𝜇, 𝜌) with 

pdf 

 

 
𝑓WN(𝜃;  𝜇, 𝜎) =

1

𝜎√2𝜋
∑ 𝑒

−
(𝜃−𝜇+2𝜋𝑚)2

2𝜎2

∞

𝑚=−∞

, 𝜃 ∈ [0, 2𝜋); 𝜎 > 0, 

𝜇 ∈ [0, 2𝜋), 

(1.34) 

 

with 𝜇 denoting the location parameter and 𝜎2 = −2log𝜌 ⇒ 𝜌 = 𝑒−
𝜎2

2 . Another useful 

representation of Eq. (1.34) is in terms of the characteristic function of the normal distribution 

 

 𝑓WN(𝜃;  𝜇, 𝜌) =
1

2𝜋
{1 + 2∑𝜌𝑝

2
cos 𝑝(𝜃 − 𝜇)

∞

𝑝=1

} , 𝜌 ∈ [0,1]. (1.35) 

 

When 𝜎2 ≤ 2𝜋, the pdf of 𝑊𝑁( 𝜇, 𝜌) can be approximated adequately for 𝑚 = 0 in Eq. (1.34) 

or by the first three terms of the infinite series of Eq. (1.35) when 𝜎2 ≥ 2𝜋 (Pewsey et al., 2013; 



Chapter 1 

25 

Mardia and Jupp, 2009). Similar to the Wrapped Cauchy distribution, 𝑊𝑁( 𝜇, 𝜌) is unimodal 

and symmetric about 𝜇 and tends to the Uniform distribution as 𝜌 → 0 while as 𝜌 → 1, it tends 

to a point distribution at 𝜇. 

 

For multimodal angular variables encountered in engineering applications, a finite mixture of 

vM distributions is implemented. The vM mixture pdf of a random angular variable 𝛩 is defined 

as the weighted sum of 𝑁 simple vM distributions, i.e.: 

 

 
𝑓mvM(𝜃; 𝜇𝑗, 𝜅𝑗, 𝜔𝑗) =∑

𝜔𝑗

2𝜋𝐼0(𝜅𝑗)

𝑁

𝑗=1

𝑒𝜅𝑗 cos(𝜃−𝜇𝑗), 𝜃, 𝜇𝑗 ∈ [0, 2𝜋); 𝜅𝑗 ≥ 0;  

𝜔𝑗 ∈ [0,1], 

(1.36) 

 

where 𝑁 is the number of components, 𝜅𝑗 and 𝜇𝑗, 𝑗 = 1,2,… ,𝑁, are the individual vM 

distribution parameters, and 𝜔𝑗 are (weighting) quantities with sum equal to one. The 

corresponding cdf for the von Mises mixture distribution is  

 

 𝐹mvM(𝜃; 𝜇𝑗, 𝜅𝑗, 𝜔𝑗) =∑

𝜔𝑗 {𝜃𝐼0(𝜅𝑗) + 2∑
𝐼𝑝(𝜅𝑗) sin𝑝(𝜃 − 𝜇𝑗)

𝑝
∞
𝑝=1 }

2𝜋𝐼0(𝜅𝑗)

𝑁

𝑗=1

. 

 

(1.37) 

 

The parameters of the finite mixture von Mises model are estimated using the expectation-

maximization (EM) algorithm for maximum likelihood estimation; for more details, see, for 

example, Ch. 4 of Jammalamadaka and SenGupta (2001), Mooney et al. (2003) and Banerjee 

et al. (2005).  

 

 

Non-parametric models 

 

The directional variables in terms of kernel density functions can be efficiently modelled by 

applying the Wrapped Normal distribution with the following expression for its density 

 

 𝑓K,WN(𝜃; ℎ) =
1

𝑛ℎ
∑𝐾WN(𝜃; 𝜓𝑖, ℎ)

𝑛

𝑖=1

, (1.38) 

 

with 𝐾WN =
1

ℎ√2𝜋
∑ 𝑒

−
(𝜃−𝜓−2𝜋𝑚)2

2ℎ2∞
𝑚=−∞ , which can be accurately approximated by the three 

central terms of the sum, i.e. for 𝑚 = −1,0,1, for moderate values of ℎ (Athanassoulis and 

Belibassakis, 2002).  

 

An expression analogous to Eq. (1.24) for kernels dealing with circular data in the 

𝑞 −dimensional sphere 𝕊𝑞 was introduced by Hall et al. (1987). For the univariate case, i.e. for 

𝑞 = 1, the circular kernel density estimation from a random sample {𝜓𝑖}𝑖=1
𝑛  is given by 

 

 𝑓K(𝜃; ℎ
∗) =

𝑐0(ℎ
∗)

𝑛
∑𝑀(ℎ∗ cos(𝜃 − 𝜓𝑖))

𝑛

𝑖=1

, 𝜃, 𝜓 ∈ [0, 2𝜋), (1.39) 

 

where 𝑀(𝜃; 𝜓, ℎ∗) is the circular kernel, 𝑐0(ℎ
∗) is a constant such that 𝑓K is a density and ℎ∗ is 

the concentration parameter with a behaviour similar to the inverse of the smoothing parameter 
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ℎ. Small values of ℎ∗ lead to over-smoothed circular densities while large ones provide under-

smoothed estimators (Oliveira et al., 2012).  

 

Few studies have been dedicated to the appropriate selection of the smoothing parameter ℎ∗ in 

circular kernel density estimation. For instance, Hall et al. (1987) suggested the use of cross-

validation bandwidths while Taylor (2008) proposed a rule of thumb for the selection of 

bandwidth assuming that the underlying population follows a vM distribution; however, the 

performance of the latter bandwidth may be rather unreliable if the involved data set exhibits 

characteristics such as multimodality and skewness. Oliveira et al. (2012) introduced a new 

plug-in rule procedure for bandwidth selection, following the simple idea proposed by Taylor 

(2008), that is based on the use of mixtures of vM distributions allowing thus more flexibility 

in the underlying model.  

 

 

1.3 Bivariate case 
 

Bivariate probability distributions seem to be a more realistic and complete approach in ocean 

and coastal engineering (e.g. for a detailed long-term analysis) since winds, waves and currents 

are generally non-independent variables. Numerous studies have been dedicated to the joint 

description of two linear rv’s such as significant wave height and wind speed since wind and 

wave loads are crucial when assessing environmental risks for a marine structure (Nerzic and 

Prevosto, 2000; Zhai et al., 2017), and wave height and period as the sea state at a particular 

location depends primarily on these two wave parameters (Haver, 1987; Ochi, 1992; 

Muraleedharan et al., 2015; Vanem, 2016). On the other hand, the joint description of linear 

and circular variables is gaining ground since the knowledge of directionality and the 

corresponding bivariate stochastic structure (including one linear and one directional variable) 

has proved to be essential, among others, for optimizing the layout of an offshore wind farm 

(Feng and Shen, 2015), and for the design of coastal and offshore structures (in terms of safety, 

stability, strength, etc.) (Jia, 2011; Wei et al., 2017). 

 

In this thesis, the construction of the bivariate distribution functions of the examined metocean 

parameters is accomplished through three different families of distributions in the parametric 

case, i.e. two parametric copulas, the Farlie-Gumbel-Morgenstern and the Plackett families of 

distributions, and the Johnson-Wehrly model, and the multiplicative kdf in the non-parametric 

case. A common feature to all bivariate models (parametric and non-parametric) is that their 

density functions rely on the corresponding univariate marginal distributions, which are known 

beforehand (coming from the marginal data). Moreover, all parametric bivariate models, apart 

from the marginal distributions functions, rely also on an additional parameter that quantifies 

the correlation/dependence of the variables.  

 

In marine energy related applications, the Farlie-Gumbel-Morgenstern family has been 

implemented by Erdem and Shi (2011) for the estimation of the bivariate distribution of wind 

speed and direction, and Qu and Shi (2010) applied the same family for the joint description of 

wind speed and air density while Carta and Mentado (2007) examined the same variables by 

applying the Plackett family. Other studies where the Plackett family has been implemented in 

applications related to wind energy assessment are those of Carta and Velázquez (2011) for the 

joint description of wind speed at a candidate and reference site in the context of developing a 

new Measure-Correlate-Predict methodology, and Bai et al. (2016) for the joint description of 

wind power and wind speed while the same model has been implemented for marine 

applications dealing with wave data such as Athanassoulis et al. (1994), Lucas and Soares 

(2015) and Vanem (2016). The Johnson-Wehrly model has been implemented in Carta et al. 

(2008b), Qin et al. (2010), Erdem and Shi (2011), Soukissian (2014), Basile et al. (2015), 

Soukissian and Karathanasi (2017) and Zhang et al. (2018) for the description of wind speed 

and wind direction. In Soukissian (2014), the same model was also applied for the joint 



Chapter 1 

27 

description of significant wave height and wave direction. In the recent work of Han et al. 

(2018), the performance of the Johnson-Wehrly model was compared with the multiplicative 

kdf for the joint modelling of wind speed and direction based on four evaluation metrics from 

four wind observations sites in China. Asymmetric distribution models based on copulas were 

also applied by Fazeres-Ferradosa et al. (2019) to obtain the joint cumulative distribution 

function of significant wave height and up-crossing mean wave period.  

 

 

1.3.1 Parametric models for linear-circular variables 
 

The common characteristic of these families is that they take explicitly into consideration the 

marginal distribution of the corresponding variables along with their dependence structure. 

Well-known families of bivariate distributions are those of Fréchet (Fréchet, 1951), Johnson 

and Wehrly (Johnson and Wehrly, 1978), Mardia (Mardia, 1970b), Farlie-Gumbel-

Morgenstern (Morgenstern, 1956; Farlie, 1960) and Plackett (Plackett, 1965) that are both 

particular expressions of copulas. The concept of copulas was first introduced by Sklar (Sklar, 

1959) and is essentially based on the construction of multivariate distribution models 

characterized by the corresponding (given) marginal distributions of the involved random 

variables and a copula function indicating their dependence structure. This interesting 

characteristic of copulas (i.e. coupling the dependence of random variables with their marginal 

behaviours) is ideal for the construction of families of bivariate distributions (Fisher, 1997). In 

this section, the Johnson-Wehrly, the Farlie-Gumbel-Morgenstern and the Plackett families of 

distributions are described.  

 

 

Johnson-Wehrly model (JW) 

 

The joint pdf 𝑓JW(𝑥, 𝜃) is expressed  

 

 𝑓JW(𝑥, 𝜃) = 2𝜋𝑓𝛹(𝜓)𝑓𝑋(𝑥)𝑓𝛩(𝜃), 𝑥 ∈ ℝ; 𝜃 ∈ [0, 2𝜋), (1.40) 

 

where 𝜓 = 2𝜋[𝐹𝑋(𝑥) − 𝐹𝛩(𝜃)], 𝜓 ∈ [0, 2𝜋) and 𝑓𝛹(𝜓) is the pdf of the rv defined by the 

previous equation, which represents the dependence structure between the rv’s 𝑋 and 𝛩.  

 

Following Carta et al. (2008b) and Soukissian (2014), 𝑓𝛹(𝜓) is a rather smooth function that 

can be described through a vM mixture pdf comprising of two components. A distinct feature 

of JW model is the fact that it is constructed directly for the joint description of linear and 

angular variables, whereas Farlie-Gumbel-Morgenstern and Plackett families are general-

purpose bivariate distributions. The elegant and closed form expression of JW model, provided 

by Eq. (1.40), along with the fact that any marginal distribution can be considered, renders the 

corresponding bivariate distribution very appropriate candidate for the description of the 

wind/wave climate in an area. A relative drawback of this model is that the corresponding 

bivariate cdf can only be numerically estimated, since there is no analytic form. 

 

 

Farlie-Gumbel-Morgenstern model (FGM) 

 

The Farlie-Gumbel-Morgenstern model belongs to the family of FGM copulas that was first 

introduced by Morgenstern (1956) and extended by Farlie (1960); see also Ch. 44 of Kotz et al. 

(2000) for a more detailed introduction to multivariate distributions, including FGM 

distributions. A thorough presentation of the corresponding theoretical background can be also 

found in Athanassoulis et al. (1994). 

 

The bivariate pdf of the FGM model is given by  
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𝑓FGM(𝑥, 𝜃) = 𝑓𝑋(𝑥)𝑓𝛩(𝜃){1 + 𝑟FGM[2𝐹𝑋(𝑥) − 1][2𝐹𝛩(𝜃) − 1]}, 𝑥 ∈ ℝ; 

𝜃 ∈ [0, 2𝜋), 
(1.41) 

 

where 𝑟FGM is the statistical association parameter between the rv’s 𝑋 and 𝛩. Let it be noted 

that the bivariate FGM distribution is valid when there is a relatively weak dependence between 

the examined variables; in turn, the permissible range of the linear-circular correlation 

coefficient 𝑟𝑋𝛩 between 𝑋 and 𝛩 is −1 3⁄ ≤ 𝑟𝑋𝛩  ≤ 1 3⁄  (Long and Krzysztofowicz, 1992; 

Guven and Kotz, 2008). 

 

The corresponding bivariate cdf is provided through the following relation 

 

 𝐹FGM(𝑥, 𝜃) = 𝐹𝑋(𝑥)𝐹𝛩(𝜃){1 + 3𝑟FGM[1 − 𝐹𝑋(𝑥)][1 − 𝐹𝛩(𝜃)]}. (1.42) 

 

The sample version of 𝑟FGM is 

 

 𝑟FGM
2 =

𝑟𝑋𝑐
2 + 𝑟𝑋𝑠

2 − 2𝑟𝑋𝑐𝑟𝑋𝑠𝑟𝑐𝑠

1 − 𝑟𝑐𝑠
2 , (1.43) 

 

where 

 

 {

𝑟𝑋𝑐 = 𝜌[(𝑥1, cos𝜃1), (𝑥2, cos 𝜃2), . . , (𝑥𝑛, cos𝜃𝑛)]

𝑟𝑋𝑠 = 𝜌[(𝑥1, sin 𝜃1), (𝑥2, sin 𝜃2), . . , (𝑥𝑛, sin 𝜃𝑛)]

𝑟𝑐𝑠 = 𝜌[(cos𝜃1 , sin 𝜃1), (cos 𝜃2 , sin 𝜃2), . . , (cos𝜃𝑛 , sin𝜃𝑛)],

 (1.44) 

 

and 𝜌 denotes the Pearson product-moment correlation based on the available sample. In Eq. 

(1.44), 𝑥𝑖 and 𝜃𝑖, 𝑖 = 1,… , 𝑛, denote realizations of the linear variable 𝑋 and the angular 

variable 𝛩, respectively.  

 

 

Plackett model (PLA) 

 

The Plackett model is also a member of the copula families. Though more complicated than the 

other systems, it is selected for the present analysis since it is valid for any bivariate random 

variable (𝑋, 𝛩) with −1 ≤ 𝑟PLA  ≤ 1. A detailed presentation of the corresponding theoretical 

background can be found in Athanassoulis et al. (1994). 

 

The joint pdf 𝑓PLA(𝑥, 𝜃) of the rv’s 𝑋 and 𝛩 is given as a function of the two marginal pdfs and 

cdfs 𝑓𝑋(𝑥), 𝑓𝛩(𝜃) and 𝐹𝑋(𝑥), 𝐹𝛩(𝜃), respectively 

 

 

𝑓PLA(𝑥, 𝜃)

= 𝜓𝛲𝑓𝑋(𝑥)𝑓𝛩(𝜃)
(𝜓𝛲 − 1)[𝐹𝑋(𝑥) + 𝐹𝛩(𝜃) − 2𝐹𝑋(𝑥)𝐹𝛩(𝜃)] + 1

[𝑆2 − 4𝜓𝛲(𝜓𝛲 − 1)𝐹𝑋(𝑥)𝐹𝛩(𝜃)]
3 2⁄

,

𝑥 ∈ ℝ; 𝜃 ∈ [0, 2𝜋), 

(1.45) 

 

where 𝜓𝛲 > 0, 𝜓𝛲 ≠ 1 is a ‘correlation-type’ parameter between marginal distributions, and 𝑆 

is given by 

 

 𝑆 = 1 + (𝜓𝛲 − 1)[𝐹𝑋(𝑥) + 𝐹𝛩(𝜃)]. (1.46) 

 

The corresponding bivariate cdf is 
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 𝐹PLA(𝑥, 𝜃) =
𝑆 − √𝑆2 − 4𝜓𝛲(𝜓𝛲 − 1)𝐹𝑋(𝑥)𝐹𝛩(𝜃)

2(𝜓𝛲 − 1)
. (1.47) 

 

The estimation of 𝜓𝛲 parameter can be made with various methods (Kotz et al., 2000). For the 

estimation of this parameter from the available data, a numerical approach is provided by the 

maximum likelihood estimator (Nelsen, 2006). An alternative solution is based on the cross-

product ratio that provides the following estimate for 𝜓𝛲 

 

 𝜓𝛲 =
𝑝1𝑝4
𝑝2𝑝3

, (1.48) 

 

where 𝑝1 = 𝑃𝑟[𝑋 ≤ 𝑥, 𝛩 ≤ 𝜃], 𝑝2 = 𝑃𝑟[𝑋 ≤ 𝑥, 𝛩 > 𝜃], 𝑝3 = 𝑃𝑟[𝑋 > 𝑥, 𝛩 ≤ 𝜃], and 𝑝4 =
𝑃𝑟[𝑋 > 𝑥, 𝛩 > 𝜃] are the observed frequencies of the corresponding cells in the (𝑥, 𝜃) −plane. 

 

An attractive property of the Plackett model refers to the estimation of 𝜓𝛲 from the observed 

frequencies of the four quadrants, determined by the lines that are parallel to the axes and pass 

through the sample medians of the two rv’s 𝑋 and 𝛩 (Mardia, 1970a; Nelsen, 2006). Eq. (1.48) 

can be written as 

 

 �̃�𝑃 =
𝑝1
′𝑝4
′

𝑝2
′𝑝3
′ , (1.49) 

 

where 𝑝1
′ , 𝑝2

′ , 𝑝3
′ , 𝑝4

′  are defined like the observed frequencies in Eq. (1.48), but 𝑥 and 𝜃 are 

substituted by the two sample medians med(𝑥) and med(𝜃), respectively. Moreover, Mardia 

(1970a) proved that this estimator minimizes the variance of �̃�𝑃.  

 

 

1.3.2 Non-parametric models for linear-circular variables 
 

The extension of the univariate kernel density in the bivariate case is achieved by means of the 

multiplicative (or product) kernels. This specific family of multiplicative kdfs is based on the 

product of the univariate kdfs, provided as follows: 

 

 𝑓K(𝒙) =
1

𝑛
∑∏𝐾𝑗ℎ𝑗(𝑥𝑗 − 𝑋𝑖𝑗)

𝑑

𝑗=1

𝑛

𝑖=1

, (1.50) 

 

where 𝐾𝑗ℎ𝑗(∙) is the kernel density in the 𝑗 −th component of the 𝑑 −variate df with bandwidth 

ℎ𝑗; see also Sec. 2.9 of Härdle (1991). In the bivariate case and based on the examined linear 

and directional variables in this thesis, the above equation is simplified to 

 

 𝑓K(𝑥, 𝜃) =
1

𝑛
∑∑𝐾𝑋(𝑋; 𝑋𝑖 , ℎ)𝐾WN(𝛩; 𝛩𝑗, ℎ

∗)

𝑛

𝑗=1

𝑛

𝑖=1

, (1.51) 

 

where 𝐾𝑋 can be the Gamma or the Lognormal kernel. 
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Chapter 2 Regression analysis & calibration of linear and 

directional variables 

2.1 General  
 

The collection of metocean information at an offshore/nearshore location can be achieved by 

measuring devices (e.g. oceanographic buoy), remote-sensing devices and numerical models at 

frequent temporal intervals and appropriate spatial scales depending on the purposes of the 

study. However, each data source is characterized by strengths and limitations, as described in 

Appendix E, due to the inherent uncertainties of each source. In situ measurements provide 

currently metocean data of the highest quality available; thus, they are regarded as ‘ground 

truth’ and are used for validation against the other two data sources in the area of interest, after 

appropriate temporal and/or spatial collocation (Schmidt et al., 2017; Young et al., 2017). 

Usually, prior to validation lies calibration. 

 

The impetus for this analysis derives from the necessity of calibrating the less accurate data 

sources rigorously in order to obtain more reliable information as a prerequisite in a range of 

applications, such as wind and wave climatology, investigation of trends and design of marine 

structures. For instance, over- or under-estimation of wind and wave variables leads to changes 

in the estimation of the corresponding potential and the extreme values. Taking for granted that 

all the above data sources contain errors, calibration techniques should not rely on conventional 

linear regression analysis, which is the primary theoretical background for such applications, 

due to violation of assumptions. Thus, a more realistic and proper approach is to consider a 

regression model that takes into account errors in both variables in order to provide a statistical 

relationship between the less reliable data source (predictand) and the more accurate one 

(predictor). The so-called measurement error model serves towards this goal (Section 2.2) while 

robust regression models are addressed as they are less sensitive in the presence of outliers 

(Section 2.4), which may also distort the results of a regression model.  

 

Despite the significance of the accurate determination of directional variables in ocean 

engineering applications, calibration techniques are rarely adopted for this type of variable. In 

this thesis, the method described for the correction of directional characteristics is based on the 

simultaneous minimization of the vertical and horizontal distances from each point to the 

regression line (Sections 2.5 and 2.6). The performance of each examined regression/ 

calibration model proposed in this thesis is assessed in real data samples of wind and wave data; 

see Section 4.3. 

 

 

2.1.1 Background 
 

Fundamentally, regression analysis is about understanding how the conditional distribution of 

a random variable 𝑌 changes for samples determined by possible values of one or more rv’s 𝑋. 

Mathematically, the regression of 𝑌 on 𝑘 rv’s 𝑋1, … , 𝑋𝑘 is written in the form 

 

𝐸[𝑌|𝑋1, … , 𝑋𝑘] = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑘𝑋𝑘

                         = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

,
 

 

where 𝑌, the variable of interest, is called response, predictand or dependent variable and 𝑋𝑖, 
𝑖 = 1,… , 𝑘, the explanatory variable, is called covariate, regressor, predictor or independent. 
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The use of terms ‘dependent’ and ‘independent’ is avoided so as to prevent any confusion with 

dependence/independence of rv’s in the probability sense.  

 

Typically, the aim of a regression model is to describe the statistical relation, if exists, between 

variables or predict the response variable for values of the covariates. Obviously, the regression 

model should not be viewed as the “true” model (i.e. a model that completely explains the 

variation in the response variable); it is most realistic to accept that a regression model verifies 

our theory about which variables strongly influence the response variable. Given a data sample 

of independent observations, the parameters that characterize the relation of these variables are 

usually estimated by the least-squares or maximum likelihood method.  

 

For the sake of convenience and clarity, first some notation is introduced that is necessary 

before going through the various regression models that is based on the distinction of the 

covariates to fixed constants and random values. Observed, also called manifest or indicator, 

variables are denoted by uppercase Roman letters, say 𝑋 or 𝑌, while unobserved, also called 

true, variables are denoted by uppercase Greek letters, say 𝛯 or 𝛨. Analogously, each realization 

of an observed (unobserved) variable is denoted by lowercase Roman (Greek) letter, say 𝑥𝑖 or 

𝑦𝑖 (𝜉𝑖 , 𝜂𝑖), 𝑖 = 1,2, … , 𝑛. Error terms, often called random or stochastic components, are 

denoted by the lowercase Greek letters 𝜀 and 𝛿. The unknown regression parameters (or 

coefficients) are denoted by the lowercase Greek letter 𝛽𝑘, 𝑘 = 0,1,2,… , 𝑟, depending on the 

number of covariates that are considered in the model. 

 

In the standard (population) linear regression, it is assumed that the covariates, either fixed or 

random, are measured without error and the corresponding model takes the form 

 

 𝑌 = 𝛽0 + 𝛽1Ξ + 𝜀, (2.1) 

 

where 𝜀 is the error term, often written as 𝜀 = 𝑌 − 𝐸[𝑌|𝛯], which essentially contains not only 

the random components of the response variable but also accounts for the effects of the 

covariates that are not included in the regression model (Berry, 1993). When a sample of 

observations (𝜉1, 𝑦1), … , (𝜉𝑛, 𝑦𝑛) is available from the population, the most frequently used 

method to estimate the unknown parameters 𝛽0 (intercept) and 𝛽1 (slope) is least-squares (LS). 

When certain assumptions from the regression theory hold (see Section 2.3), then the Gauss 

Markov Theorem ensures that the ordinary least-squares (OLS) estimators provide the best1 

linear unbiased estimates, known briefly as BLUE, for the regression coefficients. However, 

for linear regression models with errors in the covariates, it is known that the least squares 

method yields biased2 and inconsistent estimates for the involved parameters leading to 

erroneous conclusions; see also p. 3-4 of Fuller (1987). On the other hand, when only the 

response variable is observed with error, then the estimator is unbiased. 

 

 

2.2 Measurement error models  
 

As the title of this chapter implies, in this chapter reference is made to statistical models that 

take into account variables containing errors of any origin, a situation that is valid almost in 

every discipline. In the context of this thesis, measurement is the realization of a set of 

operations in the field made under (unspecified) external conditions in order to quantify the 

value of a physical parameter by means of the appropriate equipment and material. By the term 

“measurement error”, two generic types of errors are usually included: i) systematic (or non-

random), and ii) random (or stochastic) errors. The former error is mainly attributed to an 

inherent inaccuracy of the system (e.g. imperfect calibration of the measuring device) yielding 

                                                      
1 “Best” among the class of linear unbiased estimators. 
2 The bias depends on the magnitude of the measurement error and the correlation between the covariate.  
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shifted measurements from the true value by a constant amount, and in turn biased OLS 

estimators, while the latter is unpredictable from one measurement to another. Measurement 

error models (MEMs) are often encountered in the literature as “errors-in-variables models”. 

MEMs have been systematically examined by numerous researchers suggesting techniques for 

fitting regression lines when both variables are measured with error; see, e.g. Wald (1940), 

Halperin (1961), Riggs et al. (1978), Klepper and Leamer (1984) and the monograph by Fuller 

(1987), who covered a variety of statistical techniques for measurement error models, from 

simple to multivariate ones, and provided examples from various areas of application.  

 

Now, let us consider the most common case when studying relationships between two 

continuous variables 𝛯 and 𝛨, which are related with the following linear (linearity is referred 

to the parameters) form 

 

 𝛨 = 𝛽0 + 𝛽1𝛯, (2.2) 

 

where 𝛯 is the predictor variable and 𝛨 is the response variable while the parameters 𝛽0, 𝛽1 

(intercept and slope, respectively) have to be estimated. Both variables represent the “true” 

(unobserved) variables, which are measured with error; thus, the observed random variables are 

 

 𝑋 = 𝛯 + 𝛿 and 𝑌 = 𝛨 + 𝜀,  (2.3) 

 

where 𝛿 and 𝜀 are the errors, which are uncorrelated with 𝛯. Because 𝛯 and 𝛨 are observed 

with error, the model of the form (2.2) and (2.3) represents the MEM.  

 

Let us assume a sample of size 𝑛, then the unobserved variables satisfy  

 

 𝜂𝑖 = 𝛽0 + 𝛽1𝜉𝑖, 𝑖 = 1,… , 𝑛  (2.4) 

 

and the equations for the actual observed variables are 

 

 𝑥𝑖 = 𝜉𝑖 + 𝛿𝑖 and 𝑦𝑖 = 𝜂𝑖 + 𝜀𝑖, 𝑖 = 1,… , 𝑛.  (2.5) 

 

Regarding the assumptions of the random errors 𝛿𝑖 and 𝜀𝑖, it is supposed that they have mean 

zero and finite variances and they are uncorrelated with each other and amongst themselves, 

i.e. 

 

 

𝐸[𝛿𝑖] = 𝐸[𝜀𝑖] = 0,                       for all 𝑖,

𝑉𝑎𝑟[𝛿𝑖] = 𝜎𝛿
2, 𝑉𝑎𝑟[𝜀𝑖] = 𝜎𝜀

2,   for all 𝑖,

𝐶𝑜𝑣[𝛿𝑖 , 𝜀𝑗] = 0,                             for all 𝑖, 𝑗,

𝐶𝑜𝑣[𝛿𝑖 , 𝛿𝑗] = 𝐶𝑜𝑣[𝜀𝑖, 𝜀𝑗] = 0,   for all 𝑖 ≠ 𝑗.

  (2.6) 

 

The existence of errors in both variables 𝛯 and 𝛨 poses a problem different from the seemingly 

similar simple regression model described in Section 2.3, which is actually a special case of the 

MEM. Substituting 𝛯, 𝛨 from Eq. (2.3) to (2.2), it is obtained that  

 

 𝑌 = 𝛽0 + 𝛽1𝑋 + (𝜀 − 𝛽1𝛿),  (2.7) 

 

Hence, 𝑋, which is a random variable, is correlated with the error term (𝜀 − 𝛽1𝛿), with  
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𝐶𝑜𝑣[𝑋, 𝜀 − 𝛽1𝛿] = 𝐶𝑜𝑣[𝛯 + 𝛿, 𝜀 − 𝛽1𝛿]

                = 𝐶𝑜𝑣[𝛯, 𝜀] + 𝐶𝑜𝑣[𝛯,−𝛽1𝛿] + 𝐶𝑜𝑣[𝛿, 𝜀] + 𝐶𝑜𝑣[𝛿, −𝛽1𝛿]

                = −𝛽1𝐶𝑜𝑣[𝛿, 𝛿]

                = −𝛽1𝑉𝑎𝑟[𝛿]

                = −𝛽1𝜎𝛿
2.

 (2.8) 

 

Note that in the simple regression case, 𝜎𝛿
2 = 0. Due to the above correlation, applying ordinary 

least squares estimator in a MEM, yields inconsistent estimates, which are not considered 

reasonable for the parameters of such a model (Cheng and Van Ness, 2010).  

 

Based on various assumptions as regards variable 𝛯, three distinct models can be formed: 

 

a) when the 𝜉𝑖’s are unknown “fixed” (meaning “not random”) constants, then the model 

is called a functional model; 

b) when the 𝜉𝑖’s are random variables independent and identically distributed with 

𝐸(𝜉𝑖) = 𝜇 and 𝑉𝑎𝑟[𝜉𝑖] = 𝜎
2 > 0, then the model is called a structural model, and;  

c) when the 𝜉𝑖’s are independent random variables with different means 𝜇𝑖 and common 

variance 𝜎2 > 0, then the ultrastructural model is formed. From this model, functional 

and structural models are derived for 𝜎2 = 0 and 𝜇1 = ⋯ = 𝜇𝑛, respectively. In 

addition, the ultrastructural model reduces to the simple linear regression one if the 

explanatory variable is measured without error, i.e. for 𝛿𝑖 = 0. 

 

In practice, it is not straightforward to determine which relation is most appropriate for the 

situation examined. As stated in Madansky (1959), this determination depends on the type of 

inference, e.g. prediction problem or testing hypothesis about the parameters. In this thesis, 

emphasis is given on the first two models, since they are more frequently encountered in the 

relevant literature with numerous practical uses.  

 

Summing up, a MEM presumes the following three models: 

 

i. a regression model for the association of a (unobservable) regressor variable 𝛯 to a 

response variable 𝑌; 

ii. a measurement model that relates the unobservable variable 𝛯 to an observable variable 

𝑋 and assuming an additive random error 𝛿 with mean zero, and; 

iii. the generating process of the values of the true variable 𝜉. If these values are assumed 

to come from a distribution then the structural estimation is adopted, otherwise, if there 

is no explicit assumption for the distribution of 𝛯 but {𝜉𝑖}𝑖=1
𝑛  are rather considered as 

sequences of fixed but unknown values, then the functional model is used.  

 

 

2.2.1 Maximum likelihood estimation for the measurement error model 
 

Maximum likelihood (ML) is probably the most widely adopted method for parameter 

estimation in the MEMs. ML estimates are obtained by maximizing the likelihood function with 

respect to the unknown parameters. In practice, differentiating the likelihood function with 

respect to the parameters and setting the derivatives equal to zero and solving the resulting 

equations is the most common way to find the ML estimates. As regards these equations, the 

following possibilities are present: 

 

a) they can have a unique solution, which indeed maximizes the likelihood function; 

b) they may have more than one solutions, one of which is the global maximum that 

provides that ML estimate, and;  
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c) they may have more than one solutions, none of which are a maximum (e.g. a local 

maximum of the likelihood function). In this case, the likelihood function may either 

have no maximum, but the obtained solution can be considered as an estimator, or a 

maximum lies on the boundary of the parameter space. In the latter case, the ML 

estimate exists but the estimates are not obtained by solving these equations. 

 

Among the first authors that used ML estimation for the MEMs was Lindley (1947), who stated 

that likelihood equations are consistent only if there is prior information available on the 

regression parameters; see also Kendall and Stuart (1973), who revised the issue of parameter 

estimation in a model with errors in both variables. A review of the approaches used to estimate 

the unknown parameters of the linear structural model can be found in Gillard (2010). 

 

 

2.3 Simple linear regression for linear variables 
 

The classical model for the simple linear regression has the following formula:  

 

 𝑦𝑖 = 𝛽0 + 𝛽1𝜉𝑖 + 𝜀𝑖 , (2.9) 

 

with the error terms 𝜀𝑖 being independent and identically distributed such that the mean value 

is zero (𝐸[𝜀𝑖] = 0) and the variance constant (𝑉𝑎𝑟[𝜀𝑖] = 𝜎
2 > 0). Let clarify that with 

regression, one can never find the “true” linear model that describes the relation of interest 

rather an approximation of it since the analysis is done with a sample data; as regards the true 

model 𝜀 denotes the variation of 𝑦 from the true mean value at 𝜉, while in the regression, the 

residual values (deviation between the observed values 𝑦𝑖 of the variable 𝑌 and the predicted 

ones �̂�𝑖 based on the OLS coefficient estimates) computed from the sample approximate the 

errors in the population. Hereunder, all the assumptions that need to be made in regression 

models are summarized.  

 

Minimizing the sum of the squared residuals ∑ 𝜀�̂�
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 , where 𝜀̂ represents the 

vertical distance between 𝑦 and �̂�, and differentiating it with respect to each of the unknown 

parameters, the OLS estimators of 𝛽0 and 𝛽1 are obtained, after setting the derivatives to zero, 

by 

 

 �̂�0 = �̅� − �̂�1𝜉,̅ and  (2.10) 

 

 �̂�1 =
𝑠𝜉𝑦

𝑠𝜉𝜉
, (2.11) 

 

where �̅�, 𝜉̅ are the sample means of 𝑦𝑖 , 𝜉𝑖, respectively, 𝑠𝜉𝑦 = ∑ (𝜉𝑖 − 𝜉̅)(𝑦𝑖 − �̅�)
𝑛
𝑖=1  and 𝑠𝜉𝜉 =

∑ (𝜉𝑖 − 𝜉̅)
2𝑛

𝑖=1 . 

 

Despite the computational simplicity and directness of constructing and applying a simple 

linear regression model for descriptive, inferential or prediction purposes, there are restrictive 

sets of assumptions that should be satisfied in order to provide valid regression estimates. Most 

of the assumptions concerning the standard regression model (of the population) deal with the 

nature of the relationship between the response and explanatory variables and the behaviour of 

the error term as well, and are required to obtain estimators for the coefficients of the regression 
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model with desirable properties, such as unbiasedness3 and efficiency4. As regards 

unbiasedness, let clarify that it is not guaranteed that the OLS estimates for the regression 

parameters from a single sample will coincide with the population value but that after a large 

number of repeated samples from a population, the mean value of the probability distribution 

produced for the estimates of the parameters equals the true population value.  

 

The first assumption is about linearity. With the term “linear” it is implied that there is a linear 

relation between the regression coefficients 𝛽 and the covariates or alternatively that the 

conditional means of 𝑌 fall in a straight line. On the other hand, there is no need for the terms 

that involve covariates to be linear (e.g. adding the term cos𝛯 is acceptable).  

 

Regardless of the distribution of the error term, another important assumption is that the error 

term is uncorrelated with the covariate with zero mean error, expressed as 𝐸[𝜀𝑖|𝜉𝑖] = 0, and 

each error term 𝜀𝑖 has equal variance 𝜎2, i.e. 𝑉𝑎𝑟[𝜀𝑖|𝜉𝑖] = 𝜎
2 for all 𝑖 = 1,… , 𝑛, also termed 

as homoscedasticity. Note that this implies that the conditional variance of 𝑦 given 𝜉 is also 

constant. Furthermore, the error terms for any two observations 𝑖 ≠ 𝑗 must be independent with 

𝐶𝑜𝑣[𝜀𝑖, 𝜀𝑗] = 0, also called lack of autocorrelation. If these assumptions are violated, then the 

OLS estimates of the regression coefficients still remain unbiased but no longer have the lowest 

variance. 

 

Moreover, the error term is independent and identically distributed with mean value zero and 

constant variance. However, it is mathematically convenient to additionally assume that the 

errors (with respect to 𝜉) are normally distributed, i.e. 𝜀𝑖~𝑁(0, 𝜎
2) in order to accurately 

estimate confidence intervals and conduct statistical tests of significance. In turn, the 

observations of the response variable comes from a (conditional) normal distribution with 

𝐸[𝑦𝑖] = 𝛽0 + 𝛽1𝜉𝑖 and 𝑉𝑎𝑟[𝑦𝑖] = 𝜎
2. Furthermore, if the regression coefficients have to be 

estimated from a small sample, then the normality assumption is essential to justify tests of 

statistical significance and derive that the sampling distributions of the estimated regression 

coefficients are asymptotically normal distributed. On the other hand, for sufficiently large 

samples and due to the central limit theorem, the error term, approximated by the sum of an 

infinite series of independent random variables, follows a normal distribution. Nevertheless, 

the normality assumption is not necessary to obtain estimates of the regression coefficients that 

are BLUE while maximum likelihood estimator coincides with the OLS estimator of 𝛽0 and 𝛽1 

under the normality assumption regarding the error term. 

 

The covariate is considered to be non-random, meaning that the values 𝜉𝑖, 𝑖 = 1,… , 𝑛 are 

assumed to be measured without error. Otherwise, biased estimates will be derived if the 

classical regression model is applied. 

 

 

2.4 Robust regression models for linear variables 
 

Another approach that takes into account deviations from the classical regression assumptions 

and attempts to temper the influence of outliers and influential observations on the estimator is 

robust regression. This approach aims to produce estimators that are insensitive in the presence 

of these points; see the standard reference works of Tukey (1960); Huber (1981); Hampel et al. 

(1986); Rousseeuw and Leroy (1987); Staudte and Sheather (1990); Ryan (1997); Maronna et 

al. (2006); Huber and Ronchetti (2009). Compared with diagnostic methods, presented in 

Section 2.4.2, Huber (1981) mentions that robust methods are more reliable and perform better, 

                                                      
3 An estimator �̂� f a population parameter 𝜃 is called unbiased if the mean value of an infinite number of 

repeated random samples is equal to the parameter being estimated, i.e. if 𝐸[�̂�] = 𝜃. 
4 An unbiased estimator is called efficient if it exhibits the minimum variance within a given set of 

unbiased estimators.  
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since they provide a middle ground between rejecting and accepting a suspicious observation 

without the analyst’s subjective decision (to keep or remove a “suspicious” observation from 

the data sample). The essential difference between robust regression and diagnostic methods 

lies in the fact that in the latter approach the outliers are first identified and removed from the 

data set and then OLS method is applied on the “clean” data sample while in the former outliers 

are identified given that robust estimates are in hand. Moreover, if someone is not interested in 

detecting the outliers but only in the estimation of regression coefficients, still robust methods 

can provide reliable estimates since outlying data will not damage the estimation.  

 

 

2.4.1 Robust vs linear regression 
 

Simple linear regression is based on the principle of the OLS method, i.e. the minimization of 

the sum of squared residuals. The OLS estimators have some important properties: they are 

linear, unbiased, efficient (they have the minimum variance) and consistent; see also Section 

2.3. However, all these properties hold inter alia under the assumptions that the random error 

terms are statistically independent, normally distributed with zero mean. In practice, these 

conditions are rarely satisfied or even examined and normality is usually considered just as a 

convenient approximation. Despite the elegant properties of the OLS method, it should be 

highlighted that it is clearly not robust to violations of its assumptions and especially, deviations 

from the normality assumption. Moreover, OLS estimates are very sensitive to outliers, even in 

large samples, leading to inefficient and biased results. For instance, in Zaman et al. (2001), it 

is noted that even a small percentage of bad or deviant observations in a very large sample can 

change drastically the OLS coefficients and result in systematic distortions of OLS estimates. 

 

Robust methods have been introduced to provide relatively insensitive, consistent and high 

efficient estimators, when there are slight violations from the standard assumptions in the 

assumed statistical model, and for the rational consideration of outliers in regression analysis. 

In this regard, the use of robust methods is essential in various applications, since outliers are 

present in the available data samples (see Appendix E) while some of the main assumptions of 

OLS are suspicious or unrealistic, e.g. the homoscedasticity assumption.  

 

A reasonable question that may be asked at this point is why robust regression techniques are 

not widely used? There is a number of potential answers to this question. For instance, there 

are available several types of robust regression models that need to be examined in a statistical 

analysis in order to select the most appropriate one while some robust methods require complex 

analytical methods that may be unstable. As is noted in Zaman et al. (2001), some additional 

reasons are the following:  

 

 There is a rather naive trust that large sample sizes make robust techniques unnecessary.  

 A certainty that the outliers can be either detected by visual inspection or by identifying 

unusual OLS residuals. 

 There is lack of expertise as regards the interpretation of results from a robust analysis 

and lack of knowledge of the gains available from such analysis. 

 

 

2.4.2 Unusual observations 
 

OLS estimation can be substantially altered and lead to inaccurate results in the presence of one 

or multiple unusual observations in the sample. Collectively, untypical observations, the so-

called outliers, exhibit inconsistency with the bulk of the data and their occurrence is a very 

common and delicate issue in real data analysis encountered in the context of various 

applications, such as data cleansing, network intrusion, severe weather prediction, geographic 

information systems, etc.  
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Taking into consideration the position of an observation in a scatter plot and the variable in 

which it corresponds, the conspicuous observations can be grouped in three classes; see also 

Ryan (1997). The outliers in the explanatory variable, also called as leverage points, can tilt the 

least-squares line due to the large effect on the corresponding estimator. Leverage points do not 

necessarily have to be outliers. The outliers in the response variable can be considered as such, 

because they have large standardized residuals and rather large influence on the least-squares 

line, since they increase the magnitude of residuals. Finally, an outlier both in the response and 

explanatory variables may be either a point with a large standardized residual or a point that 

deviates from the linear relationship set by the majority of the data or both. In this case, the 

relationship between the two variables must be taken into account for the detection of the outlier 

in question. Another significant class of atypical observations are the so-called influential 

points, which individually or jointly excessively influence the calculated values of various 

estimates (e.g. estimated regression coefficients, standard errors, estimated values); Nurunnabi 

et al. (2016). Chatterjee and Hadi (1986) examined thoroughly the interrelationship among 

outliers, leverage and influential points and highlighted that outliers and leverage points are not 

necessarily influential, and on the other hand, influential observations may not be high leverage 

points and outliers.  

 

Since outliers may seriously affect regression analysis outputs and estimation of the relevant 

parameters, numerous procedures have been developed for the detection and investigation of 

such observations in linear regression. A straightforward way is the graphical representation 

(through scatterplots) of residuals and hat elements of the hat matrix, which are used as 

intrepretators of the amount of leverage or influence, exerted on the estimated values by the 

response variable (Hoaglin and Welsch, 1978), while there is an ongoing research on the 

simultaneous display of outliers, high leverage and influential points (Imon, 2005; Menjoge 

and Welsch, 2010; Nurunnabi et al., 2014). Another well-known statistical approach to measure 

influence is through diagnostic methods, i.e. statistics generally based on classical estimates 

aiming to the detection of influential points from the assumed model. This family of techniques 

is often implemented by the same procedure: first delete each observation one at a time and in 

turn, examine if there is any impact on the various calculated values. The most well-known 

diagnostic measures are the Cook’s distance, dfbetai and dffitsi. However, these techniques 

perform poorly in the presence of multiple outliers because of masking and swamping effects5. 

To this end, more effective, but frequently computationally expensive, diagnistics have been 

proposed in the relevant literature; see, for example, Barrett and Gray (1997); Wisnowski et al. 

(2001); Leys et al. (2018); Thennadil et al. (2018). Standard books that deal with outlier analysis 

are Hawkins (1980); Rousseeuw and Leroy (1987); Barnett and Lewis (1994); Aggarwal 

(2016).  

 

On the other hand, removing outlying data points that are legitimately present in a data sample, 

as is the case of extreme values that are commonly encountered in metocean data, may lead to 

negative effects and wrong interpretations due to the wrong selection of model. On top of that, 

OLS estimation method can be highly influenced by even one outlier. When there is evidence 

that any of the standard regression assumptions is violated due to the presence of such aberrant 

observations then other statistical approaches are suggested. One of the widely used methods is 

robustification, which is the subject of the next sections. 

 

Prior to the presentation of robust models, it is essential to make reference to specific statistical 

measures assessing robustness properties of robust regression models. Each measure of 

robustness describes different characteristics of the procedure, therefore they perform 

complementarily. 

 

                                                      
5 Masking is the inefficiency of identifying a set of outliers because of the presence of another set, usually 

neighbouring, while swamping occurs when “clean” observations are mistaken for outliers because of 

the presence of another group of observations, usually distant. 
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2.4.3 Measures of robustness 
 

Consistency  

 

Consider the random variable 𝑋 with probability distribution 𝑃𝜗 ∈ 𝒫 and cumulative 

distribution function 𝐹. 𝜗 can be expressed as a functional 𝜗 = 𝑇(𝑃), defined on 𝒫. Based on 

a random sample 𝑋1, … , 𝑋𝑛 of size 𝑛, a sensible estimator of 𝜗 is 𝑇(𝑃𝑛) (or 𝑇(𝐹𝑛)), where 𝑃𝑛 is 

the empirical probability distribution 

 

 𝑃𝑛(𝐴) =
1

𝑛
∑𝐼[𝑋𝑖 ∈ 𝐴]

𝑛

𝑖=1

, 𝐴 ∈ ℬ, (2.12) 

 

where 𝐼 is the indicator function. The empirical distribution function 𝐹𝑛, pertaining on 𝑃𝑛, is  

 

 𝐹𝑛 = 𝑃𝑛[(−∞, 𝑥]] =
1

𝑛
∑𝐼[𝑋𝑖 ≤ 𝑥]

𝑛

𝑖=1

, 𝑥 ∈ ℝ. (2.13) 

 

It is known from asymptotic statistics that as 𝑛 → ∞, the statistical functional 𝑇(𝑃𝑛) converges 

in probability to 𝑇(𝑃).  
 

A desirable property of a statistical estimator is to be Fisher consistent. Consider a random 

sample 𝑋1, … , 𝑋𝑛, with some probability distribution 𝑃, which depends on an unknown 

parameter 𝜗. Let �̂� an estimator of 𝜗 expressed as a functional of the empirical probability 

distribution6 𝑃𝑛, i.e. �̂� = 𝑇(𝑃𝑛). If 𝑇(𝑃) = 𝜗, ∀𝜗 ∈ Θ, 𝑃 ∈ 𝒫, then �̂� is said to be Fisher 

consistent (Fisher, 1922).  

 

 

Breakdown point 

 

The breakdown point ε∗ of an estimator expresses the maximal amount of contamination 

(proportion of atypical points) an estimator can withstand before it becomes essentially useless. 

Breakdown point can be defined in different ways; see, e.g. Hampel (1971); Donoho and Huber 

(1983). In this thesis, the finite-sample breakdown point is adopted. Let a random sample 

𝑋(0) = (𝑥1, … , 𝑥𝑛) of size 𝑛, from a parametric model 𝐹 depending on 𝜗, and 𝑇 a regression 

estimator such that 𝑇(𝑋) = �̂�. Now imagine that 𝑚 points from the original sample are replaced 

by arbitrary, and rather outlying, values, with the new sample denoted by 𝑋(𝑚). The breakdown 

point of 𝑇 for the sample 𝑋(0) is defined as:  

 

 ε𝑛
∗ (𝑇, 𝑋(0)) = min{

𝑚

𝑛
: sup
𝑋(𝑚)

‖𝑇(𝑋(𝑚)) − 𝑇(𝑋(0))‖ = ∞}, (2.14) 

 

where ‖⋅‖ is the Euclidean norm and sup
𝑋(𝑚)

‖𝑇(𝑋(𝑚)) − 𝑇(𝑋(0))‖ denotes the maximum bias that 

result from such contamination. An estimate is said to have broken down if the maximum bias 

is infinite. In other words, ε𝑛
∗ (𝑇, 𝑋(0)) is the smallest fraction of contaminated values in the 

sample that can lead to values of the estimator 𝑇 far from 𝑇(𝑋(0)), i.e. to unreliable estimates. 

For large (infinite) sample size, the breakdown point is given by ε∗ = lim
𝑛→∞

ε𝑛
∗ . For a more 

detailed description of the breakdown point, see Donoho and Huber (1983); Hampel et al. 

(1986); Heritier et al. (2009). Practically, the highest value of the breakdown point of an 

                                                      
6 The empirical functional is often called (sample) statistic. 
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estimator one can hope is 50%, because it is not possible to discriminate “good” observations 

from outliers for higher values, while the lowest one is 0% with the estimates bearing no 

contamination. A rather surprising result is that for OLS it holds that ε𝑛
∗ = 1 𝑛⁄ , which tends to 

zero as the sample size becomes larger. This means that even one outlying observation may 

have significant influence on the OLS estimates of the unknown parameters.  

 

 

Influence function 

 

Whereas the BDP is a global robustness measure in the sense that it measures the maximum 

amount of contamination an estimator can resist, the influence function (or curve) of an 

estimator, another important tool, measures local robustness, i.e. quantifies how infinitesimal 

perturbations (at a point 𝑥) influence an estimator in large samples.  

 

A straightforward way to assess the influence of a single observation 𝑥 on a specific sample 

statistic 𝑇𝑛 (e.g. mean, median) is to calculate the difference between the corresponding values 

with and without 𝑥. In this respect, the standardized sensitivity curve quantifies this influence 

as follows: 

 

 𝑆𝐶𝑛(𝑥, 𝑇) =
𝑇𝑛(𝑥1, … , 𝑥𝑛−1, 𝑥) − 𝑇𝑛(𝑥1, … , 𝑥𝑛−1)

(1 𝑛⁄ )
, (2.15) 

 

The influence function (Hampel, 1974) of an estimator is an asymptotic version of its sensitivity 

curve (Maronna et al., 2006). By means of the influence function, the robustness of a statistic 

𝑇 for an infinitesimal contamination at any point 𝑥, given a sample with distribution 𝐹, is 

expressed as follows: 

 

 𝐼𝐹(𝑥; 𝑇, 𝐹) = lim
ε→0+

𝑇(𝐹ε) − 𝑇(𝐹)

ε
=
𝜕

𝜕ε
𝑇(𝐹ε)|

ε=0
, (2.16) 

 

where 𝐹ε = (1 − ε)𝐹 + ε𝛿𝑥, with 𝛿𝑥 a point-mass distribution that puts all its mass at point 𝑥 

and ε denoting the level of contamination. For the local robustness of 𝑇, it is required that the 

influence function is bounded for all 𝑥. 

 

The gross error sensitivity of 𝑇 at 𝐹 is the maximum absolute value of the influence function  

 

 γ∗(𝑇, 𝐹) = sup
𝑥
|𝐼𝐹(𝑥; 𝑇, 𝐹)|, (2.17) 

 

which measures the worst influence on 𝑇 induced by a small perturbation of 𝐹 at a point 𝑥. For 

a finite gross error sensitivity (that is a bounded influence function), the statistic 𝑇 is called 

B(ias)-robust at 𝐹. 

 

Other additional concepts that are connected with influence function are local shift sensitivity 

and rejection point. The former term measures the influence of shifting slightly an observation 

from point 𝑥 to 𝑦 while the latter one represents a distance measure, meaning that points lying 

outside this distance (centre of data) have no effect on asymptotic bias (the influence function 

becomes zero).  

 

 

Asymptotic efficiency 

 

In robust regression, the efficiency of an estimator is expressed as the ratio of the smallest 

possible variance obtained using a robust regression technique divided by the one obtained from 
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OLS. Recall that the OLS estimators are considered to be the most known efficient estimators, 

if all conditions are fulfilled, since this method possesses the minimum variance. Obviously, 

the ratio of the ideal estimator is equal or close to unity. In the relevant literature, the emphasis 

is on the asymptotic efficiency. In general, the precision of an asymptotically efficient estimator 

tends to the theoretical limit, as the sample size increases. For an unbiased estimator, asymptotic 

efficiency is the limit of its efficiency as the sample size 𝑛 → ∞ and depends on the population 

(distribution). 

 

Summarizing the above-mentioned criteria, it is concluded that the following requirements are 

essential for a robust estimator 

 

 Fisher consistency; 

 non-zero breakdown point, with higher values resulting to more resistant estimators; 

 bounded influence function, so that a single unusual observation will have a very limited 

effect on the estimation; 

 quite low gross error sensitivity; 

 low local shift sensitivity and finite rejection point; 

 high efficiency. 

 

 

2.4.4 Robust estimators  
 

In the context of regression, some additional desirable properties for the robust estimators are 

regression, scale and affine equivariance. Attaining these properties it is assured that that the 

results of the regression analysis will not alter in case of particular transformations of the data. 

Based on the general case of the multiple linear regression model, let 𝐲 denote the 𝑛 × 1 vector 

of the response variable, 𝐱𝑖, 𝑖 = 1,… , 𝑛, the rows of a full rank 𝑛 × 𝑝 matrix 𝐗 and 𝛃 the 𝑝 × 1 

vector of the parameters to be estimated. An estimator 𝑇 is called regression equivarient, if  

 

 𝑇(𝐗, 𝐲 + 𝐯𝐗) = 𝑇(𝐗, 𝐲) + 𝐯, (2.18) 

 

where 𝐯 ∈ ℝ𝑛 is any vector. This condition allows the selection of any arbitrary values for the 

vector without any consequences in the validation of the results. 

 

A scale equivariant estimator requires that  

 

 𝑇(𝐗, 𝑐𝐲) = 𝑐𝑇(𝐗, 𝐲), (2.19) 

 

for any constant 𝑐 ∈ ℝ. The above condition practically suggests that the measurement units of 

the response variable (with respect to the measurement units of the explanatory variable) do not 

affect the fit results.  

 

As regards the affine equivariance, the following condition is required 

 

 𝑇(𝐗𝐀, 𝐲) = 𝐀−1𝑇(𝐗, 𝐲), (2.20) 

 

for any non-singular 𝐀 ∈ ℝ𝑝×𝑝. 

 

Let it be noted that on the face of other properties (e.g. low prediction error), sometimes 

equivariance is sacrificed (Maronna et al., 2006).  

 

Going back to the univariate notation, let us assume a random sample 𝑋1, … , 𝑋𝑛 with probability 

distribution 𝑃 and distribution function 𝐹, for which we want to examine how the response 

variable 𝑌 is related to the covariate 𝑋 by traditionally assuming a linear regression model. 
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Since OLS estimator is prone to outlying data, the robust methods have been proposed for 

estimating regression coefficients in the statistical literature, which are divided into three wide 

classes L –, M – and R – estimators. 

 

 

L – estimators 

 

Any estimator that is a linear combination of the order statistics written in the form 𝐿𝑛 =
∑ 𝑐𝑛𝑖𝑋𝑛∶ 𝑖
𝑛
𝑖=1 , where 𝑐𝑛𝑖 are real constants and 𝑋𝑛∶ 1 ≤ ⋯ ≤ 𝑋𝑛∶ 𝑛 are the ordered values of the 

sample, is called a (classical) L – estimator. Instead of minimizing the root mean square error, 

an alternative approach for the estimation of the regression parameters, proposed by Edgeworth 

(1887), is to minimize the sum of the absolute values of the residuals, i.e.  

 

 min
�̂�
∑|𝜀�̂�|

𝑛

𝑖=1

, 𝑖 = 1,… , 𝑛. (2.21) 

 

Through the above form the least absolute deviation (LAD) estimates are achieved. LAD 

estimator is also referred to as the L1 – estimator (due to the L1 norm), while OLS is sometimes 

called L2 – estimator. It is proved that the L1 – estimator can deal with 𝑦 −outliers of a sample, 

but remains weak against 𝑥 −outliers, which have greater influence on the fitting. Because of 

that effect, the breakdown point this estimator will tend to zero. A more generalized method of 

the L1 – estimator was proposed by Koenker and Bassett (1978) and is called quantile 

regression. This type of regression minimizes a sum of appropriately weighted distances 

between the observed values and the predicted ones through the check function 𝜌𝜏(𝜀̂) defined 

by −(1 − 𝜏)𝜀̂ if 𝜀̂ < 0 (over-prediction) and 𝜏𝜀̂ if 𝜀̂ > 0 (under-prediction). For the special case 

where 𝜏 = 0.5, the quantile regression coincides with L1 – estimator.  

 

A more robust alternative was first introduced by Hampel (1975) and aims at minimizing the 

median of the squared residuals, which is formulated as  

 

 min
�̂�
𝑚𝑒𝑑𝜀�̂�

2, 𝑖 = 1,… , 𝑛. (2.22) 

 

yielding the least median of squares (LMS) estimator. LMS is resistant to both 𝑥 − and 

𝑦 −outliers, possesses the highest possible breakdown point and is equivariant as regards linear 

transformations on the covariates. However, LMS performance in terms of asymptotic 

efficiency is rather poor.  

 

Another known L – estimator that has higher breakdown point is the least trimmed squares 

(LTS) regression estimator developed by Rousseeuw (1984). This estimator is defined by 

 

 min
�̂�
∑(𝜀̂2)𝑖∶ 𝑛

ℎ

𝑖=1

, 𝑖 = 1,… , 𝑛. (2.23) 

 

where (𝜀̂2)1∶ 𝑛 ≤. . . ≤ (𝜀̂
2)𝑛∶ 𝑛 are the squared ordered residuals (first squared and then ordered) 

and ℎ, known as coverage, is the number of the remaining observations after the trimming, 

which should satisfy that 𝑛 2⁄ < ℎ ≤ 𝑛. There is a trade-off as regards ℎ as for small values of 

ℎ a higher breakdown point is attained whereas high values of ℎ lead to higher efficiency (on 

condition that the sample is not too contaminated). The maximum breakdown point (50%) is 

attained when ℎ = 𝑛 2⁄ + [(𝑝 + 1) 2⁄ ], with 𝑝 denoting the number of explanatory variables in 

the regression model, which coincide with the half sample in the simple regression model; see 

Rousseeuw and Leroy (1987), p. 132, Theorem 6. However, in realistic applications, the 

proportion of outliers in the sample is much smaller – usually 10–25%. Obviously, when ℎ =
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𝑛, which corresponds to the OLS estimator, the breakdown point is zero. Moreover, LTS 

satisfies the properties of regression, scale and affine equivariance. Although LTS has a 

relatively low asymptotic efficiency, but better than LMS, as stated by Croux et al. (1994), it 

still plays a role in the estimation of the parameters of other more robust methods. 

 

 

M – estimators  

 

In Huber (1964), the use of another approach of robust regression was introduced, the M – 

estimators, which are a trade-off between the efficiency of OLS and the resistance of L1 – 

estimators. This class of estimators can also be regarded as a generalization of MLE. An M – 

estimator is defined by minimizing the following function of the residuals: 

 

 min
�̂�
∑𝜌(𝜀�̂�)

𝑛

𝑖=1

, 𝑖 = 1,… , 𝑛, (2.24) 

 

where 𝜌(⋅) is called objective function, and should be continuous, non-negative, symmetric 

function with a unique minimum at zero. The M – estimator is simply a general robust case that 

results in the OLS estimator by appropriately defining function 𝜌(⋅).  
 

Differentiating Eq. (2.24) with respect to the regression coefficients and setting to zero, it is 

obtained that  

 

 ∑𝜓(𝜀�̂�)

𝑛

𝑖=1

 𝐱𝐢 = 𝟎, 𝑖 = 1,… , 𝑛, (2.25) 

 

where 𝜓(⋅) is the derivative of 𝜌(⋅), called the score (or influence) function. Eqs. (2.24) and 

(2.25) are not necessarily equivalent; for instance, Eq. (2.25) may have more solutions than Eq. 

(2.24). If a bounded, monotone 𝜓 −function is chosen, then the breakdown point of this 

estimator is approximately 50%, leading also to bounded 𝜌 −functions with unique solutions 

for the corresponding M – estimator. M – estimation can be robust if a 𝜓 −function with 

rejection of remote outliers is chosen while a more reliable solution can be achieved when a 

redescending 𝜓 −function is used, which discard completely but gradually (avoiding abrupt 

jumps) the effect of distant outlying observations. The essence behind the redescending M – 

estimators is to give maximum weight for the residuals lying around the neighbourhood of zero 

and the more they depart from the centre, the weight gets smaller. Among the most commonly 

used objective functions for M – estimators are: i) the Huber estimator; ii) the Andrew 

estimator; iii) the Welsch estimator, and; iv) the biweight or Tukey’s bisquare estimator. See 

also Table 2-1.  

 

Because M – estimator is not scale equivariant, the residuals have to be standardized by means 

of a preliminary (specified) estimate of scale 𝑆 as follows 

 

 ∑𝜓(𝜀�̂� 𝑆⁄ )

𝑛

𝑖=1

 𝐱𝐢 = 𝟎, 𝑖 = 1,… , 𝑛, (2.26) 

 

A popular robust estimator for the scale factor 𝑆 is the normalized median absolute deviation 

(MAD), defined by 

 

 𝑆 =
MAD

0.6745
, (2.27) 
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where MAD = 𝑚𝑒𝑑[|𝜀�̂� −𝑚𝑒𝑑(𝜀�̂�)|], 𝑖 = 1,… , 𝑛. Through the constant 1 0.6745⁄ =
1 Φ−1(0.75)⁄  a consistent estimator for 𝜎 is achieved for observations randomly sampled from 

a normal distribution. Alternatively, the regression coefficients have to be estimated 

simultaneously with scale. Since this estimator is based on the median, it is highly resistant to 

outlying observations, with ε𝑛
∗ = 50% and a bounded influence function. Generally, M – 

estimators are statistically better than OLS with regard to resistance and robustness to 

𝑦 −outliers. In some cases, their performance is poor compared to the latter, since they do not 

consider leverage points. In order to deal with this drawback, some authors proposed to enhance 

the definition of M – estimator by an appropriate weight function. To this end, Mallows (1975) 

proposed the generalized M – estimator by replacing Eq. (2.26) with 

 

 ∑𝑤𝑖𝜓(𝜀�̂� 𝑆⁄ )

𝑛

𝑖=1

 𝐱𝐢 = 𝟎, 𝑖 = 1,… , 𝑛, (2.28) 

 

where 𝑤𝑖 = 𝑊(𝜀�̂� 𝑠⁄ ). In practice, the M – estimates cannot be computed directly from the data, 

because the weights depend upon the residuals, which in turn, depend upon the estimates. As a 

result, they are computed using an iteratively reweighted least squares (IRLS) algorithm. 

 

Table 2-1. Objective and weight functions for the most popular M – estimators. rH, rA, rW and 

rB are tuning constants used appropriately to provide high efficiency in the normal case  

Estimator Objective function Weight function 

Least-squares 𝜌LS(𝜀̂) = 𝜀̂
2 𝑤LS(𝜀̂) = 1 

Huber 
𝜌H(𝜀̂) = {

     𝜀̂2 2⁄ ,     |𝜀̂| ≤ 𝑟H
𝑟H|𝜀̂| − 𝑟H

2 2⁄ , |𝜀̂| > 𝑟H
 𝑤H(𝜀̂) = {

    1,    |𝜀̂| ≤ 𝑟H
𝑟H |𝜀̂|⁄ , |𝜀̂| > 𝑟H

 

Andrew 
𝜌A(𝜀̂) = {

𝑟A(1 − cos(𝜀̂ 𝑟A⁄ )), |𝜀̂| ≤ 𝑟A𝜋

         2𝑟A,           |𝜀̂| > 𝑟A𝜋
 𝑤A(𝜀̂) = {

sin(𝜀̂ 𝑟A⁄ ) (𝜀̂ 𝑟A⁄ )⁄ , |𝜀̂| ≤ 𝑟A𝜋

            0,          |𝜀̂| > 𝑟A𝜋
 

Welsch 
𝜌W(𝜀̂) =

𝑟W
2

2
[1 − exp(−(

𝜀̂

𝑟W
)
2

)] , |𝜀̂| ≤ ∞ 𝑤W(𝜀̂) = exp (− (
𝜀̂

𝑟W
)
2

) , |𝜀̂| ≤ ∞ 

Biweight  𝜌B(𝜀̂)

= {
𝑟B
2 6⁄ {1 − [1 − (𝜀̂ 𝑟B⁄ )2]3}, |𝜀̂| ≤ 𝑟B
             𝑟B

2 6⁄ ,             |𝜀̂| > 𝑟B
 

𝑤B(𝜀̂) = {
[1 − (|𝜀̂| 𝑟B⁄ )2]2, |𝜀̂| ≤ 𝑟B
         0,          |𝜀̂| > 𝑟B

 

 

 

S – estimators  

 

S – estimated, introduced by Rousseeuw and Yohai (1984), were developed to improve the 

efficiency of both LMS and LTS, based on the estimates of scale. Specifically, their objective 

functions are replaced by a more efficient scale estimator that is applied to the residuals 𝜀�̂� in 

order to minimize their dispersion, and their mathematical expression is 

 

 min
�̂�
𝑆(𝜀1̂(𝛃), . . . , 𝜀�̂�(𝛃)),  (2.29) 

 

The dispersion 𝑆(𝜀1̂(𝛃), . . . , 𝜀�̂�(𝛃)) should satisfy the following constraint: 

 

 
1

𝑛
∑𝜌(

𝜀�̂�
𝑆
)

𝑛

𝑖=1

= 𝜅, 𝑖 = 1,… , 𝑛, (2.30) 

 

where 𝜅 is a constant, taken often equal to 𝐸Φ[𝜌(𝜀̂)] to assure consistency of 𝑆 at the standard 

normal distribution function Φ. S – estimators are regression and scale equivariant, and can 

achieve high breakdown point with the appropriate selection of 𝜌 −function. However, they 

cannot combine simultaneously high relative efficiency (approximately 30%); see Hossjer 
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(1992). Another drawback refers to the optimization procedure implemented to obtain S – 

estimators, which is rather delicate. The reason lies in the fact that many local minima may 

emerge for the bounded, but not convex, 𝜌 −function resulting in random resampling 

algorithms for the solution. This implies that the repetition of this procedure (for the same data 

sample) may provide different estimates. As we shall see immediately afterwards, S – 

estimators are usually used to provide an initial estimate in more complex robust regression 

methods. In order to overcome the low efficiency of S – estimators, Croux et al. (1994) proposed 

the generalised S – estimators, which are based on the minimization of the generalized M – 

estimator of residual scale. 

 

 

MM – estimators  

 

Another class of robust estimators, introduced by Yohai (1987) for the linear regression setting, 

which tries to combine the high efficiency of M – estimators with the high resistance to outliers 

of S – estimators (i.e. high breakdown point), is the so-called MM – estimates. There is a three-

step procedure to estimate the regression coefficients �̂�: i) at the first stage, an initial estimate 

�̂�(0) is calculated so that it possesses a high breakdown point, such as LTS or S – estimates 

(with Huber or bisquare functions), but not necessarily high efficiency, ii) at the second stage, 

a robust M – estimate of scale 𝑆 of the residuals is computed based on the initial estimate, and 

iii) in the final stage, �̂� is defined as any solution of 

 

 ∑𝜓[𝜀�̂�(�̂�) 𝑆⁄ ]

𝑛

𝑖=1

 𝐱𝐢 = 𝟎, 𝑖 = 1,… , 𝑛, (2.31) 

 

which satisfies  

 

 ∑𝜌(𝜀�̂�(�̂�) 𝑆⁄ )

𝑛

𝑖=1

≤∑𝜌(𝜀�̂�(�̂�
(0)) 𝑆⁄ )

𝑛

𝑖=1

, 𝑖 = 1,… , 𝑛. (2.32) 

 

It is obvious that at the final stage an M – estimation is carried out with only one extra condition. 

Thus, the IRLS can be applied to compute the potential solution of Eq. (2.31) by keeping fixed 

the measure of the scale estimate S in each iteration. Moreover, Yohai (1987) proved that the 

final estimator will obtain the highest breakdown point (i.e. 50%), if an estimator with equal 

breakdown point is used in the first stage. The objective functions of stages 1, 2 and 3 can vary, 

since the two first stages are responsible for breakdown point and the third one for asymptotic 

efficiency. Generally, MM – estimator performs well except in the presence of high leverage 

points (Simpson and Montgomery, 1998).  

 

 

R – estimators  

 

Robust regression estimators based on ranks of the residuals are called R – estimators, and were 

proposed by Hodges and Lehmann (1963) and extended by Jaeckel (1972) and others. Let 𝑅𝑖 
denote the rank of the 𝑖 −th residual 𝜀�̂�, and 𝑎(⋅) a monotone score function such that it satisfies 

∑ 𝑎𝑛(𝑖)
𝑛
𝑖=1 = 0, then the minimization of the following sum provides the R – estimates 

 

 min
�̂�
∑𝑎𝑛(𝑅𝑖)𝜀�̂�

𝑛

𝑖=1

, 𝑖 = 1,… , 𝑛. (2.33) 
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In contrast with the M – estimators, this class of estimators are scale equivariant. On the other 

hand, most of the R – estimates have a breakdown point ε𝑛
∗ = 1 𝑛⁄ → 0, when 𝑛 → ∞. R – 

estimators are not used in this thesis, but are described in brief for completeness. 

 

 

2.5 Circular regression models 
 

Circular regression regards the prediction of the circular response variable conditional on the 

explanatory one and can be found in numerous applications including engineering and 

environmental sciences. Regression models that handle circular data are generally categorized 

in three groups depending on the nature of the variables involved. In this respect, i) if both the 

response and the explanatory (or covariate) reside on the unit circle, we refer to a circular-

circular regression model, ii) if the response variable takes values on the real line and the 

explanatory on the unit circle, then the regression model is called linear-circular, and iii) 

circular-linear regression for the vice versa case.  

 

An early study of regression models including circular variable(s) was made by Gould (1969), 

who introduced a maximum likelihood solution for estimating the parameters of a (multivariate) 

circular-linear regression problem; however, those parameters were not unique (Lund, 1999; 

SenGupta and Ugwuowo, 2006). Some years later, in the works by Mardia (1972), Johnson and 

Wehrly (1978) and Fisher and Lee (1992) improvements of Gould’s model were presented 

while Laycock (1975) described several regression models including circular variates. Lund 

(1999) defined a regression model for the prediction of a circular variable by a circular predictor 

and a set of linear covariates showing that least circular distance and maximum likelihood 

estimates coincide if circular response follows a von Mises distribution. SenGupta and 

Ugwuowo (2006) studied a multivariate regression model with a linear response variable, a 

circular explanatory one, expressed as a trigonometric polynomial, and a set of linear 

covariates. This model was applied to solar and wind energy data.  

 

Circular-circular regression models have been proposed by many authors. For instance, 

Jammalamadaka and Sarma (1993) introduced a circular regression model for two circular rv’s, 

where the circular response variable is expressed through sine and cosine functions that are 

regressed on functions expressed in terms of the Fourier series expansions of the circular 

explanatory variable. The estimation of parameters of the suggested model is based on least 

squares. Rivest (1997) provided a circular regression method for predicting direction using a 

rotation of the decentred predictor with application to earthquake datasets. In the work by 

Downs and Mardia (2002), the proposed regression model between circular variables was based 

on a tangent link function and is equivalent to the Möbius circle transformation on the complex 

plane. The latter mapping was also adopted by Kato et al. (2008) for the introduction of a new 

circular-circular regression model, under the assumption that errors follow a Wrapped Cauchy 

distribution instead of the von Mises distribution, which was applied to marine biology and 

wind direction data. The two latter regression models were extended by Kato and Jones (2010) 

and Hussin et al. (2004), who proposed a linear association between the two circular variables 

by constraining for practical reasons the real-valued parameter of the explanatory variable to 

take values close to unity. Polsen and Taylor (2015) after presenting a review on circular-

circular regression models, introduced a method for the detection of influential observations. 

SenGupta and Kim (2016) proposed the least circular distance estimation method in order to 

analyse the circular variables of a new circular-circular regression model in the context of 

determining the relationship of circular genomes. 

 

For the rest of this section let 𝜃𝑖 and 𝜙𝑖 be the observed values of the circular explanatory 

variable 𝛩 and the circular response variable 𝛷, respectively. Since the function atan2 returns 

values within the interval (−𝜋, 𝜋], it is more convenient to work with directions in this interval. 
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The mapping to [0, 2𝜋) can be easily made by using the modulo operation of each direction 

with 2𝜋. 

 

 

2.5.1 Circular-circular regression model 
 

In order to obtain rational results after performing a circular regression, it is necessary to include 

a link function between the circular variables as the concept of scaling is non-existent; in this 

respect, various approaches have been developed for circular regression (Rueda et al., 2016). 

In this thesis, the circular-circular regression model presented by SenGupta et al. (2013) and 

SenGupta and Kim (2016), which is a generalization of Downs and Mardia’s model, is adopted. 

First, let us consider the following mapping 

 

 tan (
𝛩 − 𝜇𝛩
2

) = 𝛽0 + 𝛽1tan (
𝛷 − 𝜇𝛷
2

), (2.34) 

 

where 𝜇𝛩 and 𝜇𝛷 are the location parameters of the circular variables 𝛩 and 𝛷, respectively, 𝛽0 

is a real number denoting the rotation from 𝜇Θ, and 𝛽1 is the slope regression parameter in the 

closed interval [−1,1]. See also Figure 2-1, for a graphical representation of this mapping. 

 

Since the tangent function has double solutions in (−𝜋, 𝜋] and the range of arctangent function 

is limited to (−
𝜋

2
,
𝜋

2
), a unique solution of Eq. (2.34) can be obtained if we turn to half angles, 

i.e. 

 

 𝛩 = 𝜇𝛩 + 2 tan
−1 {𝛽0 + 𝛽1tan (

𝛷 − 𝜇𝛷
2

)}. (2.35) 

 

Now let us suppose that 𝜃𝑖’s are the sample values from the response circular variable 𝛩, which 

are subject to error. Each of these values are observed for each fixed value 𝜙𝑖 of the explanatory 

circular variable 𝛷. Based on the above mapping, the circular-circular regression model is 

defined as follows: 

 

 

Figure 2-1. Graphical representation of the tangent mapping for selected of 𝛽1. 𝜇𝛩, 𝜇𝛷 and 

𝛽0 are set to zero. 
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 𝜃𝑖 = 𝜇𝜃 + 2 tan
−1 {𝛽0 + 𝛽1tan (

𝜙𝑖 − 𝜇𝜙

2
)} + 𝜀𝜃,𝑖, 𝑖 = 1,… , 𝑛, (2.36) 

 

where 𝜀𝜃,𝑖 is a random error that follows the von Mises distribution with zero mean direction 

and a constant concentration parameter.  

 

Replacing 𝜇𝜙 by �̅�, the estimation of the unknown parameters of the model in Eq. (2.36) (𝛽0, 

𝛽1 and 𝜇𝜃) is based on the minimization of the circular distance, a non-negative measure, 

between two angles 𝜓,𝜔 expressed as follows: 

 

 𝑑(𝜓,𝜔) = 1 − cos(𝜓 − 𝜔), 𝑑 ∈ [0, 2]. (2.37) 

 

For |𝜓 − 𝜔| = 𝜋(mod2𝜋), then 𝑑 = 2, while 𝑑 = 0 implies that 𝜓 = 𝜔(mod2𝜋). The 

minimization of the sum of squared distances applied in the linear regression is replaced by the 

minimization of sums of the above circular distance given by the following form 

 

 

min𝐷(𝛽0, 𝛽1, 𝜇𝜃) =  min∑[1 − cos(𝜃𝑖 − 𝜃𝑖)]

𝑛

𝑖=1

          = min∑[1 − cos (𝜃𝑖 − 𝜇𝜃 − 2 tan
−1 {𝛽0 + 𝛽1tan(

𝜙𝑖 − �̅�

2
)})] ,

𝑛

𝑖=1

 (2.38) 

 

where 𝐷(⋅) is the sum of the circular distances. Taking the first order partial derivatives of 𝐷(⋅) 
with respect to the parameters 𝛽0, 𝛽1 and 𝜇𝜃, it is obtained 

 

 

𝜕𝐷(𝛽0, 𝛽1, 𝜇𝜃)

𝜕𝛽0
 = ∑

[
 
 
 
 2sin (𝜃𝑖 − 𝜇𝜃 − 2 tan

−1 {𝛽0 + 𝛽 tan (
𝜙𝑖 − �̅�
2

)1
 })

1 + (𝛽0 + 𝛽 tan(
𝜙𝑖 − �̅�
2

)1
 )

2

]
 
 
 
 𝑛

𝑖=1

= 0 ; 

(2.39) 

 

 

𝜕𝐷(𝛽0, 𝛽1, 𝜇𝜃)

𝜕𝛽1

=∑

[
 
 
 
 2tan (

𝜙𝑖 − �̅�
2 ) sin (𝜃𝑖 − 𝜇𝜃 − 2 tan

−1 {𝛽0 + 𝛽 tan (
𝜙𝑖 − �̅�
2 )1

 })

1 + (𝛽0 + 𝛽 tan (
𝜙𝑖 − �̅�
2 )1

 )
2

]
 
 
 
 

= 0

𝑛

𝑖=1

; 
(2.40) 

 

 
𝜕𝐷(𝛽0, 𝛽1, 𝜇𝜃)

𝜕𝜇𝜃
=∑−sin(𝜃𝑖 − 𝜇𝜃 − 2 tan

−1 {𝛽0 + 𝛽 tan(
𝜙𝑖 − �̅�

2
)1

 }) = 0

𝑛

𝑖=1

. (2.41) 

 

 

2.5.2 Linear-circular and circular-linear regression models 
 

When modelling the relation between a linear response variable 𝑌 and a circular explanatory 

one 𝛩 (case of linear-circular regression), a simple model, proposed by Mardia (1976), can be 

written of the form 

 

 𝑦𝑖 = 𝛽0 + 𝛽1cos𝜃𝑖 + 𝛽2sin𝜃𝑖 + 𝜀𝑦,𝑖, 𝑖 = 1,… , 𝑛, (2.42) 
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where 𝑦𝑖 denotes the linear observations, 𝜃𝑖 is the circular observations and 𝜀𝑦,𝑖 are the random 

errors assumed to be independent and identically distributed following a normal distribution 

with mean 0 and (constant) variance 𝜎2. The regression coefficients 𝛽0, 𝛽1, 𝛽2 can be estimated 

by applying the least squares or the maximum likelihood methods. 

 

A similar model has been proposed by Kim and Sengupta (2015) with the following form 

 

 𝑦𝑖 = 𝛽0 + 𝛽1cos(𝜃𝑖 − 𝜇𝜃) + 𝜀𝑦,𝑖, 𝑖 = 1,… , 𝑛, (2.43) 

 

where 𝜇𝜃 denoted the mean direction. For 𝛽1 > 0 and 𝜃 moving away from 𝜇𝜃, 𝑦 decreases, 

while it increases as 𝜃 is moving towards 𝜇𝜃. For 𝛽1 < 0, the opposite is valid. Let it be noted 

that there is 2-to-1 mapping from 𝜃 to 𝑦 (or from 𝑦 to 𝜃); e.g. 𝑦 takes the same value when 𝜃 =
𝜇 + 𝜋 and 𝜃 = 𝜇 − 𝜋. 

 

Likewise, in case a circular response variable 𝛩 is to be modelled as a function of a linear 

explanatory variable 𝑌, the following model can be applied 

 

 cos(𝜃𝑖 − 𝜇𝛩) = 𝛽0 + 𝛽1𝑦𝑖 + 𝜀𝜃,𝑖, 𝑖 = 1,… , 𝑛, (2.44) 

 

assuming that 𝜀𝜃,𝑖 follows the von Mises distribution with zero mean 0 and concentration 

parameter 𝜅. 
 

 

2.6 Calibration models 
 

The classical statistical calibration is used when someone wants to predict an estimate of a new 

𝑥0 given a new observed 𝑦0. Assuming the simple case of model (2.9), the calibration model is 

written as (Eisenhart, 1939) 

 

 𝑥0,C = −
�̂�0

�̂�1
+
1

�̂�1
𝑦0, (2.45) 

 

with �̂�0 and �̂�1 denoting the estimated parameters from the regression method.  

 

The assumptions that hold for the above model is that the regressor 𝑋 is measured without error 

while the random errors of 𝑌 are normally distributed about the true values, have constant 

variance 𝜎2 and are independent of 𝑋. As was demonstrated by Williams (1969), the reciprocal 

of the slope, assuming Cauchy-like behaviour, has infinite variance and thus, infinite mean 

squared error7.  

 

An alternative approach is to regress 𝑋 on 𝑌, a procedure known as inverse regression, and has 

the following form  

 

 𝑥𝑖 = 𝛽0
′ + 𝛽1

′𝑦𝑖 +𝜔𝑖, (2.46) 

 

where 𝑦𝑖 and 𝜔𝑖 are independent and also 𝜔𝑖~𝒩(0, 𝜎𝜔
2). Hence, the estimate 𝑥0 is provided by 

 

 𝑥0,I = �̂�0
′ + �̂�1

′𝑦0.  (2.47) 

 

                                                      
7 The variance (and bias) of the slope and the mean squared error are important statistical properties in 

linear regression since other properties depend on them (e.g. variance of intercept). 



Chapter 2 

49 

However, the inverse regression assumes that 𝑌 is measured with negligible error, which is 

usually unrealistic in real-world applications. The major differentiation between the two 

methods is that the former one minimizes the sum of the vertical distances between 

measurements and the fitted line while in the latter one the sum of the horizontal distances is 

minimized. 

 

Krutchkoff (1967) compared inverse and reverse regression by means of Monte Carlo 

simulations and showed that the reverse regression is more efficient regarding prediction based 

on the mean squared error; however, his approach has come under some criticism (Berkson, 

1969; Halperin, 1970; Osborne, 1991) and supports as well (Centner et al., 1998; Srivastava, 

1995; Tellinghuisen, 2000). These two calibration methods can lead to different estimates of 

the regressor variable 𝑋 and raised many controversies; yet no definitive solution has been 

obtained due to the complexity of the problem (Kannan et al., 2007).  

 

Although a wide variety of studies have been focused on the classical calibration and inverse 

regression for linear variables, there are very limited works on the calibration problem for 

circular variables despite their apparent value in offshore and nearshore applications. A 

reference work for this subject is provided by SenGupta et al. (2013).  

 

Let clarify that the calibration procedure in this thesis is implemented in order to correct the 

response variable in terms of the regressor one rather than predict the regressor variable after 

observing one or more values of the response variable. This concept has been adopted in a series 

of publications (Soukissian et al., 2014; Soukissian and Papadopoulos, 2015b; Karathanasi et 

al., 2016); particular results of some of them are briefly presented in Part II. 

 

 

2.6.1 Calibration of linear variables 
 

Suppose that for an unknown 𝛯f, 𝑌f is obtained, according to Eq. (2.3) by 

 

𝑌f = 𝛨f + 𝜀f, 𝜀f ~ 𝒩(0, 𝜎𝜀
2) 

𝛨f = 𝛽0 + 𝛽1𝛯f. 
 

Based on Eq. (2.1), 𝛯f can be estimated by 

 

 �̂�f,C = −
�̂�0

�̂�1
+
1

�̂�1
𝑌f, (2.48) 

 

while in light of Eq. (2.46), the corresponding estimate is given by 

 

 �̂�f,I = �̂�0
′ + �̂�1

′𝑌f. (2.49) 

 

 

2.6.2 Calibration of directional variables 
 

In order to apply the classical circular regression, firstly the estimation of the unknown 

parameters of Eq. (2.36) is necessary by minimizing the objective function 𝑄(∙) based on the 

circular distances between the initial and predicted values of the response variable 𝛷 (see also 

Eq. (2.37)): 
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min𝑄(𝛽0, 𝛽1, 𝜇𝜃, 𝜇𝜙) = min∑[1 − cos(𝜃𝑖 − 𝜃𝑖)]

𝑛

𝑖=1

 

= min∑[1 − cos(𝜃𝑖 − 𝜇𝜃 − 2 tan
−1 {𝛽0 + 𝛽1tan(

𝜙𝑖 − 𝜇𝜙

2
)})]

𝑛

𝑖=1

. 

(2.50) 

 

The estimates �̂�0, �̂�1, �̂�𝜃, �̂�𝜙 are obtained by setting the first order equations for each parameter 

equal to zero. The calibration equation for predicting the unknown value of the regressor 𝛷 is 

estimated by  

 

 �̂� = �̂�𝜙 + 2 tan
−1 {

tan (
𝜃 − �̂�𝜃
2

) − �̂�0

�̂�1
}. (2.51) 

 

On the other hand, in order to implement inverse circular calibration, Eq. (2.36) is solved with 

respect to 𝜙 and the obtained relation is the following: 

 

 
𝜙 = 𝜇𝜙 + 2 tan

−1 {
𝛽0
𝛽1
−
1

𝛽1
tan (

𝜃 − 𝜇𝜃
2

)} 

=𝜇𝜙 + 2 tan
−1 {𝛽0

′ − 𝛽1
′ tan (

𝜃−𝜇𝜃

2
)}. 

(2.52) 

 

where 𝛽0
′ =

𝛽0

𝛽1
 and 𝛽1

′ =
1

𝛽1
. 

 

The objective function that is minimized has the form  

 

 

min𝑄(𝛽0
′ , 𝛽1

′ , 𝜇𝜃 , 𝜇𝜙) = min∑[1 − cos(𝜙𝑖 − �̂�𝑖)]

𝑛

𝑖=1

 

= min∑∑ [1 − cos (𝜙𝑖 − 𝜇𝜙 − 2 tan
−1 {𝛽0

′ + 𝛽1
′tan (

𝜃𝑖 − 𝜇𝜃
2

)})]
𝑛

𝑖=1

𝑛

𝑖=1

. 

(2.53) 

 

As regards the prediction of the unknown values 𝜙 based on the estimation of 𝛽0
′ , 𝛽1

′ , 𝜇𝜃, 𝜇𝜙 

parameters, the obtained equation is 

 

 �̂� = �̂�𝜙 + 2 tan
−1 {�̂�0

′ + �̂�0
′ tan (

𝜃 − �̂�𝜃
2

)}. (2.54) 

 

When the circular calibration is based on the orthogonal distance, i.e. on the simultaneous 

minimization of both vertical and horizontal distances used in Eqs. (2.50) and (2.53), 

respectively, the corresponding objective function is 

 

 

𝑄(𝛽0, 𝛽1, 𝜇𝜃, 𝜇𝜙) =∑[1 − cos(𝜃𝑖 − 𝜃𝑖)]

𝑛

𝑖=1

+∑[1 − cos(𝜙𝑖 − �̂�𝑖)]

𝑛

𝑖=1

 

=∑[1 − cos(𝜃𝑖 − 𝜇𝜃 − 2 tan
−1 {𝛽0 + 𝛽1tan(

𝜙𝑖 − 𝜇𝜙

2
)})]

𝑛

𝑖=1

 

+∑[1 − cos(𝜙𝑖 − 𝜇𝜙 − 2 tan
−1 {

tan (
𝜃𝑖 − 𝜇𝜃
2 ) − 𝛽0

𝛽1
})]

𝑛

𝑖=1

. 

(2.55) 
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and is minimized for the estimation of the unknown parameters. Then, according to the obtained 

estimates �̂�0, �̂�1, �̂�𝜃, �̂�𝜙, the unknown values of 𝛷 can be predicted by applying Eq. (2.51) for 

new values of 𝛩, since these two methods rely on the same regression equation (i.e. Eq. (2.36)). 
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Chapter 3 Directionality in extreme value analysis of linear 

variables 

3.1 General 
 

In order to ensure that offshore and coastal facilities or structures are reliable both in terms of 

structure and economic viability, it is of paramount importance to estimate accurately the 

behavior of extreme values of the involved environmental variables during the structural and 

risk assessment. Typical metocean parameters that are analysed in the context of extreme value 

analysis through statistical approaches are wind speed, significant wave height and wave 

period, which are mainly obtained by long-term (of the order of 30 years or more) hindcast data 

bases and measurements with constant statistical properties in time. However, there are some 

factors that affect wind and wave regimes and violate the assumption of stationarity since 

spatial, temporal and/or directional variations may take place in the long-term study of a 

phenomenon. For instance, the statistical characteristics of wind speed present seasonal 

variations and consequently, affect the distribution parameters. The dependence of direction on 

the variability of a specific parameter is also evident; a typical example is the generation of 

higher waves at particular directional sectors compared to others at an offshore location.  

 

In extreme value theory, there are two central approaches that are broadly used: the block 

maxima and peaks over threshold approaches. In the former case equal-sized non-overlapping 

bins (blocks) are generated to extract maximum observations while in the latter case 

observations above a certain threshold, appropriately selected, are extracted; however, there is 

not yet an established and robust methodology for the threshold selection; see, e.g. the recent 

review of Bücher and Zhou (2018) for an edifying discussion on these two methods. Both 

methods usually represent the metocean conditions in terms of amplitude and frequency 

assuming a unidirectional behavior for practical reasons.  

 

Directionality is the objective of this chapter, where directional variables are incorporated in 

the peaks-over-threshold (POT) approach in order to investigate the dependence of extreme 

values of wind and wave characteristics on a directional covariate. Although the beginnings of 

extreme value theory date back to the 1920s with various works investigating the limiting 

distribution of the largest order statistic (e.g. from R. von Mises, L.H.C. Tippett, R.A. Fisher), 

the first attempts to incorporate directionality in extreme value models was made in the early 

1980s (see, e.g. Graham (1981) and Moriarty and Templeton (1983)). In this connection, only 

recently directionality has been adopted as a covariate in the formulation of metocean design 

criteria since the dynamic behaviour and performance of marine energy devices is affected by 

directionality characteristics (see, e.g. Philippe et al. (2013)). 

 

In the subsequent sections of this chapter the impacts of wind and wave directionality for 

specific types of wave energy devices and foundations of wind turbines at sea are discussed in 

order to emphasize the benefit from considering directionality features during the design of 

such structures. Next, a short overview of the basic concepts from the classical extreme value 

theory is presented along with some well-known methods for threshold selection and 

declustering. Then, the directional extreme model is analytically described and some 

modifications are introduced as regards the estimation of extreme parameters.  
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3.2 Response of marine energy devices to directionality 
 

In the context of ocean energy technology, the knowledge about the extreme behaviour of wind 

and wave features including directional dependence is crucial; see, e.g. Larsén et al. (2015). For 

instance, most of the support structures for offshore wind turbines, either fixed or floating, are 

non-axisymmetric (apart from monopile foundations) leading to different operational response 

and capacity as regards loading intensity from metocean characteristics and fatigue 

performance. The fact that the overall cost of energy can be lowered through the continuous 

development of design of such structures and improved risk assessment techniques render 

directionality an integral part of design optimization, and reliability and safety maximization. 

On top of that, current regulations and standards from well-established organizations related to 

engineering design principles for structures at sea, such as the American Petroleum Institute 

(API) and the Det Norske Veritas (DNV), recommend as well the consideration of directionality 

to ensure proper structural safety. 

 

The effects of directionality on some well-known wave energy converters are presented and 

different types of floating structures for offshore wind turbines, with low and high degree of 

influence from directional features, are also addressed.  

 

 

3.2.1 Wave energy converters  
 

Typically, offshore waves propagate towards a wave energy device, deployed offshore, from a 

range of directions thus, this device has to cope with this variability. The capture of energy from 

offshore waves can be achieved if the wave energy device has either a sufficient compliant 

mooring system that allow it to be aligned with the orientation of the device to the mean 

direction (for efficient power conversion) or a symmetrical frame. On the other hand, as the 

waves are travelling from deep to shallow waters, they are refracted while approaching the 

shore and they end up travelling at right angles to the shoreline regardless of the original 

direction of propagation. Hence, wave energy devices can be placed on the shore since the wave 

direction can be easily determined in advance due to this natural phenomenon.  

 

Based on the effects of directionality in the performance and efficiency of wave energy 

converters (WECs) deployed offshore or nearshore, indicative examples from existing 

advanced technologies with different working principles, horizontal sizes and orientation are 

presented dealing with WECs whose performance is either highly affected by the incoming 

wave front or its influence is considered negligible.  

 

 

WECs highly influenced by wave direction 

 

Attenuators and terminators are the most common types of WECs whose performance is highly 

influenced by their orientation with respect to the prevailing direction of a given sea state. 

Specifically, attenuators are elongated floating devices that are oriented parallel to the wave 

direction, with a horizontal extent comparable to the wavelength, which lie in a predefined place 

thanks to moorings on the seabed. The incoming wave that passes along the device generates 

movements within the device that in turn exerts force on a turbine that produces energy. The 

most well-known attenuator is the Pelamis (http://www.emec.org.uk/about-us/wave-

clients/pelamis-wave-power) which is the first commercially viable device that generated 

energy from the waves and provided electricity to the grid via cable. It was developed and 

manufactured in Scotland by an Edinburgh-based company and its first major demonstration 

project with three full-scale devices, with a rated power of 750 kW each, was in Aguçadoura, 

Portugal. The Pelamis consists of a set of semi-submerged cylinders that are linked by hinged 

joints (right representation of Figure 3-1). The motion of the joints (in the heave and sway 

http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power
http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power
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directions) induced by waves is resisted by hydraulic rams, which pump high-pressure oil 

through turbines driving electrical generators for power generation. 

 

Figure 3-1. Types of WECs (Source: Tavner (2017)). 

In opposition to the attenuators, terminators are oriented perpendicular to the predominant wave 

direction. Two typical forms of terminators are the oscillating water column (OWC) devices 

and the oscillating wave surge converters (OWSCs); see also left and middle representations of 

Figure 3-1. OWC devices consists of a partially submerged part (bottom-fixed, shore-mounted 

or floating) forming an air chamber. As the free surface of the water is risen inside the chamber 

due to the incident wave, the volume of air enclosed by this chamber is compressed. Then, the 

compressed air escapes through an aperture above the water column, which is connected to a 

bidirectional air turbine mounted on top of the structure for electricity generation. As the water 

inside the chamber drops, the air pressure is decreased making the air go back through the 

turbine. LIMPET was the first commercial-scale OWC, of 500 kW capacity, built in 2000 in 

the Scottish island of Islay. In contrast to OWC devices, OWSCs are driven by the horizontal 

particle motion of the wave, which is amplified in the near-shore environment. Oyster is an 

example of a flap-type OWSC. It is a near-shore device, fixed to the seabed at around 10–16m 

depth, and consists of a hinged mechanical flap. This flap is moved as the waves pass over the 

device and drives two hydraulic pistons to deliver pressurised water to an onshore turbine for 

the generation of electricity. The first full-scale demonstrator Oyster began producing power in 

2009 when it was launched at the European Marine Energy Centre in Orkney, Scotland, where 

wave energy was converted to electricity through a 315kW electrical generator driven by a 

hydro-electric turbine. 

 

WECs not influenced by wave direction 

 

WECs that are able to capture energy from waves from any direction without having a principal 

direction like attenuators or terminators belong in the category of point absorbers. Typically, 

point absorbers are cylindrical in shape, with diameter smaller than a typical wavelength, and 

constrained to one or more degrees of freedom (usually the heave motion) while most their 

designs refer to a body symmetric about the vertical axis. Such devices have often relatively 

simple structure compared to the other wave energy converters and can extract energy from 

waves coming in any direction by oscillating with the movements of water for those that float 

near/at the surface or for submerged devices, they move up and down due to the variations in 

subsea pressure induced by the motion of waves. These movements can generate energy by 

their transfer against some sort of resistance that can take various forms.  

 

Two representative point absorbers that have reached an advanced stage of technological 

development is the AquaBuOY and the Archimedes Wave Swing (AWS) with the main 

alteration the non-fixed and fixed bottom end of the structure to the sea bed, respectively; see 

also Table 1 of Bozzi et al. (2018). AquaBuOY consists of a floating buoy that is connected 

underneath with a large cylinder. In the center and inside this cylinder, a piston is housed and 

is connected with both ends of the buoy through a hose pump. This hose pump is stretched and 
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compressed accordingly to the relative motion between the buoy and the piston and in turn the 

flow of the pressurized water drives a Pelton turbine, generating power. The corresponding 

rated power is 250 kW. On the other hand, AWS (http://www.awsocean.com/archimedes-

waveswing.html) consists of a completely submerged air-filled cylinder with a ‘floating’ upper 

part, which moves vertically with respect to the bottom-fixed part, the so-called basement. The 

changes in water pressure as wave crests and troughs passes over the device consecutively 

induce the movement of the floater, which is converted into electrical energy via a hydraulic 

system. A pilot plant that was deployed offshore the northern Portuguese coasts in 2004 had a 

rated maximum power of 2 MW (Cruz and Sarmento, 2007). 

 

The performance of a WEC in converting energy from waves is expressed through the capture 

width indicator, defined as the ratio between the absorbed power and the incident wave power 

of a wave-front equal to the width of the WEC times this width. According to the type of WEC, 

the captured width ratio could vary with peak wave period but with wave direction as well. 

Note that even in the case where the wave energy device is less sensitive to wave direction in 

terms of power capture, it is possible that an array of devices is affected by the corresponding 

layout and the spatial orientation, and the shadow effects as well. Interactions within a wave 

farm can produce dissimilarities in power absorption; hence, some devices operate at their full 

capacity while others at a more reduced rate.  

 

 

3.2.2 Floating wind turbines 
 

Concerning the recent technology of offshore wind turbines mounted on floating support 

structures for water depths over 50 m, they can be roughly classified in three categories: i) semi-

submersible support wind turbines; ii) spar-type support wind turbines, and; iii) tension leg 

platforms. The corresponding concepts are shown in Figure 3-2. In terms of affordability, the 

most promising floating support structures are the first two types; however, further 

improvements need to be considered for future large scale implementations. The first floating 

pilot wind farm of 30MW capacity is based on spar-type structures, which are located offshore 

Peterhead, Scotland. In addition, some full-scale prototype semi-submersible wind turbines 

have been tested at sea, e.g. WindFloat installed off the Portuguese coast at 60m water depth in 

2011. 

 

Essentially, the motion stability of a floating wind turbine highly depends on the wind and wave 

forces and moments acting on it, which vary in amplitude, direction and frequency over a 

typical design life of approximately 25 years and generate structural vibrations and extreme 

loads on various components of the structure. Since hydrodynamic characteristics differ along 

with wind and wave headings, it would be valuable to have a better understanding of the 

directionality effects on such structures to mitigate loads and improve efficiency. Considering 

the characteristics of a spar-type floating wind turbine, Barj et al. (2014) revealed that the 

aligned wind and wave conditions induce the highest extreme and fatigue loads for most 

structure locations while including misaligned wind and wave conditions can be useful to 

improve the estimation of extreme and fatigue loads. Moreover, Lyu et al. (2019) discovered 

that longitudinal modes (surge and pitch motion) of this floating system are mostly dependent 

on wind loads while transverse modes (sway and roll motion) rely mostly on the wave loads. 

As regards heave motion caused by buoyancy, it seems that it is independent of wind and wave 

directions.  

 

Taking into account a triangular semi-submersible foundation, its asymmetric structural 

features make it sensitive to wind and wave direction resulting to diverse hydrodynamic loads. 

Specifically, Bachynski et al. (2014) studied the platform motions and tower loads in aligned 

and misaligned wind and wave conditions for two triangular semi-submersible platforms, 

among others, and showed that the former conditions caused the largest tower base fatigue 

http://www.awsocean.com/archimedes-waveswing.html
http://www.awsocean.com/archimedes-waveswing.html
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damages while the latter contributed to slightly increased motions. Karimirad and Michailides 

(2016) also concluded that motions, tension of mooring lines and functionality of a V-shaped 

semi-submersible floating turbine are not significantly affected when misaligned wind-wave 

conditions are present in operational conditions. Furthermore, Antonutti et al. (2016) showed 

by means of simulations that as regards wave direction, surge, heave and pitch are mainly 

affected by inclination for collinear wind and waves while sway, roll and yaw are altered by 

cross wave-and-wind cases. In Zhou et al. (2017) the performance of a Y-shaped semi-

submersible wind turbine in different load directions was investigated through model tests and 

numerical simulations; the obtained results indicated that directionality affects the operation 

and maintenance of this type of floating wind turbine and the corresponding impacts should be 

predetermined thoroughly before installation in the offshore environment. 

 

As regards the power efficiency of a floating wind turbine, the rotor adapts to the incident wind 

direction through a hydraulic pitch system ensuring that the wind direction is perpendicular to 

the disk formed by the rotor blade of the wind turbine as much as possible so that the captured 

wind energy is maximized. However, abrupt changes in wind direction cause stress on the rotor 

module of the wind turbine due to the constant disparities on load conditions. Furthermore, as 

in the case of WECs, the efficiency of an offshore wind farm is influenced by wake effects. 

Even small changes in wind direction can change the power output of the wind farm due to the 

increase of power losses making the power production less predictable. 

 

 

3.3 Introduction to extreme value analysis: basic concepts and theoretical 

results 
 

Let us consider a sequence of independent and identically distributed random variables 

𝑋1, 𝑋2, … , 𝑋𝑛, following the cumulative distribution function (cdf) 𝐹𝑋 (or simply 𝐹). Let also 

𝑀𝑛 = max{𝑋1, 𝑋2, … , 𝑋𝑛}, 𝑛 ∈ ℕ, denote the maximum random variable of this sequence. In 

order to describe the probabilistic behavior of 𝑀𝑛, the corresponding cdf 𝐹𝑀𝑛(𝑥) should be 

evaluated. This can be done using the following relation: 

 

 𝐹𝑀𝑛(𝑥) = 𝑃(𝑀𝑛 ≤ 𝑥) = ∏ 𝑃(𝑋𝑖 ≤ 𝑥)
𝑛
𝑖=1 = [𝐹(𝑥)]𝑛, for 𝑥 ∈ ℝ, 𝑛 ∈ ℕ. (3.1) 

 

If the distribution 𝐹 and the sample size 𝑛 are known, the principal problem in extreme value 

theory can be solved. However, it is rare in practice that the underlying cdf 𝐹 is known. Even 

 

Figure 3-2. Floating wind turbine support structures: (left) semi-submersible structure; 

(middle) spar-type structure; and (right) tension leg platform (Wu et al., 2019). 
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if 𝐹 can be estimated from a given sample and replace the theoretical one in Eq. (3.1), small 

discrepancies in the estimation of 𝐹 can lead to significant discrepancies in 𝐹𝑛 as 𝑛 increases.  

 

Accepting that 𝐹 is unknown, it is essential to examine the asymptotic behavior of 𝑀𝑛 near the 

upper endpoint of the support of 𝐹 (in its right tail), where extremes occur. Let us denote 𝑥+ =
sup{𝑥 ∈ ℝ:𝐹(𝑥) < 1} the right endpoint of 𝐹. As 𝑛 → ∞, the cdf of 𝑀𝑛 converges to a 

degenerate distribution on the upper endpoint 𝑥+,which is 

 

 𝐹𝑀𝑛(𝑥)   →𝑛→∞
  {
0, for 𝑥 < 𝑥+
1, for 𝑥 ≥ 𝑥+.

  (3.2) 

 

Thus, the searching of a limiting distribution 𝐹𝑀(𝑥) (that will depend on 𝑛) is necessary such 

that 𝐹𝑀(𝑥) = lim
𝑛→∞

𝐹𝑀𝑛(𝑥). To avoid degeneration of 𝐹𝑀(𝑥), 𝑀𝑛 is modified by means of a 

linear normalization expressed by 𝑀 = 𝜎𝑛𝑥 + 𝜇𝑛, where the quantities 𝜎𝑛 > 0 and 𝜇𝑛 ∈ ℝ are 

properly selected such that 

 

 𝐹𝑀(𝑥) = lim
𝑛→∞

𝑀𝑛(𝜎𝑛𝑥 + 𝜇𝑛) = lim
𝑛→∞

[𝐹(𝜎𝑛𝑥 + 𝜇𝑛)]
𝑛 = 𝐺(𝑥).  (3.3) 

 

of all 𝑥 ∈ ℝ, at which 𝐺 is continuous. In the context of extreme value theory (i.e. the theory 

for studying the stochastic structure of the rv 𝑀𝑛), except for finding all possible (non-

degenerate) distributions 𝐺 that satisfy Eq. (3.3), the distributions 𝐹 have to be characterized 

for which sequences of {𝜎𝑛} and {𝜇𝑛} exist such that Eq. (3.3) holds for any limit distribution. 

Before the formulation of the proposition that ensures the existence of the limiting distributions 

for 𝑀𝑛
∗ , two fundamental concepts for extreme value theory are introduced, the concepts of 

maximum domain of attraction and max-stability. 

 

Let 𝐹 a non-degenerate cdf (of 𝑋). 𝐹 is said to belong to the maximum domain of attraction of 

cdf 𝐺, i.e. 𝐹 ∈ 𝒟(𝐺), if there exist sequences of {𝜎𝑛} and {𝜇𝑛}, such that 𝐹 satisfies the 

relationship 

 

 lim
𝑛→∞

𝑃(𝑀𝑛 ≤ 𝜎𝑛𝑥 + 𝜇𝑛) = lim
𝑛→∞

[𝐹(𝜎𝑛𝑥 + 𝜇𝑛)]
𝑛 = 𝐺(𝑥). (3.4) 

 

A non-degenerate cdf 𝐺 is max-stable if there are constant 𝜇𝑛 and 𝜎𝑛 > 0, for each 𝑛 = 2,3,…, 

such that [𝐺(𝜎𝑛𝑥 + 𝜇𝑛)]
𝑛 = 𝐺(𝑥). An alternative definition is derived as follows: “A non-

degenerate cdf 𝐺 is max-stable if, for each 𝑛 = 2,3,…, the cdf’s 𝐺𝑛 and 𝐺 are of the same type.” 

If 𝐺1 and 𝐺2 are two cdf’s of the same type, i.e. 𝐺2(𝑥) = 𝐺1(𝜇𝑥 + 𝜎), and 𝐹 ∈ 𝒟(𝐺1), then 

𝐹 ∈ 𝒟(𝐺2). From the above definition we see that every max-stable distribution is a limit 

distribution for maxima of iid rv’s (Embrechts et al., 1997). 

 

Now, the possible limiting distributions for 𝑀𝑛
∗  are provided by the theorem attributed to Fisher 

and Tippett (1928) and Gnedenko (1943), stating that if there exist two sequences of constants 
{𝜎𝑛 > 0} and {𝜇𝑛} such that (𝑀𝑛 − 𝜇𝑛) 𝜎𝑛⁄  converges in distribution to 𝐺, with 𝐺 a non-

degenerate distribution function, then 𝐺 belongs to one of the three families: 

 

i) Gumbel family (type I): 𝐺𝐺(𝑥) = exp {−exp [− (
𝑥−𝜇

𝜎
)]} ,   𝑥 ∈ ℝ, 𝜎 > 0; 

 

ii) Fréchet family (type II): 𝐺𝐹(𝑥) = {
0,                                        𝑥 ≤ 𝜇

exp {− (
𝑥−𝜇

𝜎
)
−𝑎
} ,          𝑥 > 𝜇, 𝑎 > 0;

 

 

iii) Weibull family (type III): 𝐺𝑊(𝑥) = {
exp {− [−(

𝑥−𝜇

𝜎
)
𝑎
]} , 𝑥 < 𝜇, 𝑎 > 0

1,                                    𝑥 ≥ 𝜇,
 



Introduction to extreme value analysis: basic concepts and theoretical results 

58 

 

where 𝜇 ∈ ℝ and 𝜎 > 0 are the location and scale parameters, respectively, and 𝑎 > 0 (for 

types II and III) is the shape parameter. The three different limit distributions are called extreme 

value distributions and the associated pdfs for types I, II and III, respectively, are given by: 

 

𝑔𝐺(𝑥) =
exp [−(

𝑥 − 𝜇
𝜎

)] exp {−exp [−(
𝑥 − 𝜇
𝜎

)]}

𝜎
, 𝑥 ∈ ℝ, 𝜎 > 0; 

 

𝑔𝐹(𝑥) = {

0,                                                                         𝑥 ≤ 𝜇

𝑎

𝜎
(
𝑥 − 𝜇

𝜎
)
−(𝑎+1)

exp {− (
𝑥 − 𝜇

𝜎
)
−𝑎

} , 𝑥 > 𝜇, 𝑎 > 0;
 

 

𝑔𝑊(𝑥) = {

𝛼

𝜎
(
𝑥 − 𝜇

𝜎
)
𝑎−1

exp {− [−(
𝑥 − 𝜇

𝜎
)
𝑎

]} , 𝑥 < 𝜇, 𝑎 > 0

0,                                                                          𝑥 ≥ 𝜇.
 

 

Note that every max-stable distribution is of extreme value type and conversely, each 

distribution of extreme value type is max-stable. In this way, it is ensured that the normalized 

rv 𝑀𝑛
∗  has a limiting distribution that must take only one of the above specified forms, as the 

sample size increases, regardless of the distribution 𝐹 of the 𝑋𝑖, 𝑖 = 1,… , 𝑛. In this sense, the 

Fisher-Tippett-Gnedenko theorem is an analogous result of the central limit theorem; in the 

latter theorem, the limit of the sums of iid rv’s is described while in the former the limit of 

maxima is of interest.  

 

When each rv 𝑋𝑛 has a given cdf 𝐹, it is important to know which (if any) of the three types of 

limit distribution applies. von Mises (1936) established some simple sufficient conditions, such 

that the maxima of a distribution function 𝐹 with density 𝑓 converge to some specific 

distribution function 𝐺 while various necessary and sufficient conditions, involving the “tail 

behaviour”, are known for each type of limit; for the complete proofs, see de Haan (1976). 

However, in real applications the underlying assumption of iid rv’s is usually not satisfied. On 

these grounds, Leadbetter (1974) proved that these distributions hold also for dependent rv’s 

provided that there is long-range dependence at extreme levels  

 

These three limit distributions can be integrated into a single parametric representation, as 

suggested by von Mises (1936) and Jenkinson (1955), widely known as the Generalized 

Extreme Value (GEV) distribution. The cdf of GEV is expressed in the following form: 

 

 𝐺(𝑥; 𝜇, 𝜎, 𝜉) =

{
 

 exp [− [1 + 𝜉 (
𝑥 − 𝜇

𝜎
)]
−1/𝜉

] , 𝜉 ≠ 0, 1 + 𝜉
𝑥 − 𝜇

𝜎
> 0

exp [−exp(−
𝑥 − 𝜇

𝜎
)] ,            𝜉 = 0, 𝑥 ∈ ℝ,

 (3.5) 

 

with 𝜇, 𝜎, 𝜉 denoting the location, scale and shape parameter, respectively.  

 

The corresponding pdf is  

 

 

𝑔(𝑥; 𝜇, 𝜎, 𝜉)

=

{
 
 

 
 
1

𝜎
[1 + 𝜉 (

𝑥 − 𝜇

𝜎
)]
−(1+1 𝜉⁄ )

exp {− [1 + 𝜉 (
𝑥 − 𝜇

𝜎
)]
−1/𝜉

} , 𝜉 ≠ 0

1

𝜎
exp [−(

𝑥 − 𝜇

𝜎
)] exp [−exp [−(

𝑥 − 𝜇

𝜎
)]] ,                       𝜉 = 0.

 
(3.6) 
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Notice that the shape parameter 𝜉, the so-called extreme value index, characterizes the tail 

behaviour of GEV distribution at its upper end, a significant feature corresponding to different 

behaviour of extreme events both in magnitude and frequency; i) for 𝜉 = 0, the Gumbel family 

is obtained, which is unbounded with a tail of exponential type; ii) if 𝜉 > 0, the Fréchet class 

is bounded from below with right heavy tail, and; iii) if 𝜉 < 0, GEV is reduced to the Weibull 

class is bounded from above with finite upper endpoint. Summing up, the two fundamental 

theorems mentioned above provide a model for the description of maxima values, which in 

practical applications are partitioned into blocks and are called block maxima. However, the 

rational of block maxima method has a significant limitation; it discards important information 

of the extremal behaviour of a variable that usually lasts for some period of time leading to a 

less representative selection of extreme values. Moreover, the choice of the block size is a trade-

off between bias and variance. A large block size leads to large variance in estimation due to 

the generation of few block maxima; on the other hand, a small block size may lead to bias due 

to the poor approximation of the asymptotic distribution.  

 

An alternative parametric model for the estimation of the tail behaviour has been proposed by 

Pickands–Balkema–de Haan Theorem (Balkema and de Haan, 1974; Pickands, 1975) and is 

based on the number of excess values 𝑘 over a high enough (predefined) threshold 𝑢 from the 

initial set of observations for statistical inference. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a sequence of iid rv’s 

with common cdf 𝐹 and let also 𝑌𝑗 = 𝑋(𝑗) − 𝑢, 𝑗 = 1,… , 𝑛𝑢, with 𝑋(𝑗) denoting the 

observations that exceed the threshold 𝑢. The distribution of excesses (𝑌1, … , 𝑌𝑛𝑢) 𝐹𝑢 can be 

described using the conditional probability 𝐹𝑢(𝑦):= 𝑃[𝑌 ≤ 𝑦|𝑋 > 𝑢]. 𝐹𝑢 can be written in 

terms of 𝐹 as follows: 

 

 𝐹𝑢(𝑦):= 𝑃[𝑌 ≤ 𝑦|𝑋 > 𝑢]  =
𝑃[𝑋 ≤ 𝑦 + 𝑢, 𝑋 > 𝑢]

𝑃[𝑋 > 𝑢]
=
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
. (3.7) 

 

Solving Eq. (3.7) with respect to the unconditional distribution 𝐹(𝑥) the following 

representation is derived: 

 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐹𝑢(𝑥 − 𝑢) + 𝐹(𝑢). 
 

The limit theorem by Pickands–Balkema–de Haan states that the distribution of exceedances 
(𝑋 − 𝑢) 𝐹𝑢(𝑦) for large values of the threshold 𝑢 can be approximated by the generalized Pareto 

(GP) distribution defined by:  

 

 𝐻(𝑦; 𝜎𝑢, 𝜉) = 1 − (1 +
𝜉𝑦

𝜎𝑢
)
−1 𝜉⁄

, (3.8) 

 

for 𝑦 > 0 and 1 + 𝜉𝑦 𝜎𝑢⁄ > 0, where 𝜉 is the shape parameter and 𝜎𝑢 > 0 is the scale 

parameter, if 𝐹 belongs in one of the three domains of attraction of the GEV distribution such 

that lim
𝑢↑𝑥+

sup
0≤𝑦≤𝑥+−𝑢

|𝐹𝑢(𝑦) − 𝐻(𝑦)| = 0.  

 

Hence, for large enough 𝑢, the distribution of exceedances over 𝑢 is estimated by 𝐹𝑢(𝑦) ≈
𝐻(𝑦). For 𝜉 ≥ 0 the domain of 𝑦 is [0, +∞) and 𝐺 follows a reparametrized version of Pareto 

distribution when 𝜉 > 0, and an exponential distribution when 𝜉 = 0, and for 𝜉 < 0, it is 
[0, −𝜎𝑢 𝜉⁄ ] and GP distribution becomes a Pareto type II distribution. Note that GEV and GP 

distributions share the same shape parameter 𝜉 while the scale parameter 𝜎𝑢 is defined as a 

function of the location and shape parameters of GEV, given by 𝜎𝑢 = 𝜎 + 𝜉(𝑢 − 𝜇). Similarly 

to GEV, the shape parameter of GP determines the tail behaviour: for 𝜉 < 0 the distribution has 

an upper bound, for 𝜉 > 0 the distribution has no upper limit and for 𝜉 = 0 is also unbounded.  
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As regards the pdf of GP, it yields correspondingly: 

 

 ℎ𝑢(𝑦; 𝜎𝑢, 𝜉) =

{
 
 

 
 1

𝜎𝑢
(1 +

𝜉𝑦

𝜎𝑢
)
−(1+1 𝜉⁄ )

, 𝜉 ≠ 0

1

𝜎𝑢
exp (−

𝑦

𝜎𝑢
) ,                    𝜉 = 0.

 (3.9) 

 

The examination of the rv 𝑌 leads to an alternative approach, called peaks-over-threshold (POT) 

method, the theoretical background of which was developed from hydrologists during the 80s; 

see, e.g. Todorovic (1978), Revfeim (1983). Summarizing, the GEV distribution 𝐺 describes 

the limit distributions of the normalized maxima while the GP distribution 𝐻 is the limit 

distribution of the excesses over a high threshold 𝑢. 

 

 

3.4 Return period and return level 
 

After assessing the adequacy of the model through goodness-of-fit tests, the return levels, 

associated with certain return periods, can be estimated. For a specific event, the 𝑇 −year return 

period denotes that there is 1 𝑇⁄  probability (on average) in any particular year that the 𝑇 −year 

event will be exceeded, under the assumption of stationarity. For a given return period 𝑇 of 

interest with an associated return level 𝑥𝑇 that the maxima can reach, we have that: 

 

 

𝐹(𝑥𝑇) = 𝑃[𝑀𝑛 ≤ 𝑥𝑇]

          = 1 − 𝑃[𝑀𝑛 > 𝑥𝑇]

          = 1 − 1 𝑇⁄ .

 (3.10) 

 

Hence, the return period is defined as 𝑇 = 1 [1 − 𝐹(𝑥𝑇)]⁄ .  

 

Supposing that the GP distribution is suitable for modelling the exceedances and having 

estimated its unknown parameters by the ML method, from Eq. (3.7) the probability of a rv 𝑋 

exceeding a threshold u is 

 

 𝑃[𝑋 > 𝑥] = 𝑝𝑢 [1 + 𝜉 (
𝑥 − 𝑢

�̂�𝑢
)]
−1 �̂�⁄

, (3.11) 

 

where 𝑝𝑢 = 𝑃[𝑋 > 𝑢], i.e. the probability of threshold exceedance. Introducing the term ‘mean 

exceedance rate’, which is the average number of observations above the threshold 𝑢 per year, 

an estimate of 𝑝𝑢 can be given by the empirical distribution function 

 

 �̂�𝑢 =
𝑛𝑢
𝑛
, (3.12) 

 

where 𝑛𝑢 is the number of observations exceeding the threshold 𝑢. Let it be noted that �̂�𝑢 is 

also the ML estimate of 𝑝𝑢, since the number of threshold exceedances follow the binomial 

distribution 𝐵𝑖𝑛(𝑛, 𝑝𝑢). 
 

Now, assuming that 𝑛 measurements 𝑋1, … , 𝑋𝑛 were taken during 𝑛𝑦 observation years then it 

is implied that during 𝑇 years there are 𝑛𝑇 𝑛𝑦⁄  observations. Thus, the 𝑥𝑇 −return level (that is 

exceeded on average once in 𝑇 years) is obtained by rearranging Eq. (3.11) and using Eq. (3.12). 
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 𝑥𝑇 =

{
 
 

 
 
𝑢 +

�̂�𝑢

𝜉
[(
𝑛𝑢𝑇

𝑛𝑦
)

�̂�

− 1] , 𝜉 ≠ 0

𝑢 + �̂�𝑢𝑙𝑛 (
𝑛𝑢𝑇

𝑛𝑦
),                  𝜉 = 0.

 (3.13) 

 

 

3.5 Threshold selection for excess models 
 

The a priori selection of a suitable threshold implies the existence of an additional unknown 

parameter for the GP distribution, which may affect the validity of the estimates and is still an 

open issue with no established approach. As with the block size in the block maxima method, 

it is a trade-off between bias and variance. A low threshold will result in large bias and low 

variance leading to incorrect results for the obtained estimates since less representative extreme 

data are taken into account whereas a high threshold will result in small bias and large variance 

in the estimation of the parameters leading to unreliable results due to the smaller sample size. 

 

A plethora of statistical techniques has been proposed for the determination of the appropriate 

threshold; see, e.g. the reviews of Scarrott and MacDonald (2012) and Langousis et al. (2016) 

for more details. According to the latter work, these methods can be roughly categorized as 

follows: i) graphical methods where one searches for linear behaviour of the GP parameters (or 

related metrics) within a range of thresholds, such as mean residual life plot and parameter 

stability plot; ii) goodness-of-fit-tests that detect the lowest threshold for which the GPD is 

suitable either by minimizing the asymptotic mean square error of the estimators or quantifying 

the deviations between the theoretical distribution and the empirical cdf, and; iii) non-

parametric methods that determine the appropriate starting point of the extreme region of the 

data record. Since each method leads to different threshold choices, the sensitivity of the 

inferences (as regards parameter estimation) is evaluated as well. Thus, in the subsequent 

sections, a summary of the most widely used approaches that will be used in this thesis is 

presented. 

 

 

Mean excess plot  

 

Following the threshold stability property of the GP distribution (i.e. shape and modified scale 

parameters remain constant for higher values of the threshold) and supposing that the excesses 

over a threshold 𝑢∗ follow this distribution, Davison and Smith (1990) suggested using the 

mean of the GP distribution 

 

 E[𝑋 − 𝑢∗|𝑋 > 𝑢∗] =
𝜎𝑢∗

1 − 𝜉
, (3.14) 

 

for 𝜉 < 1, which is called mean excess (or mean residual life) function of 𝑋. For any threshold 

𝑢 > 𝑢∗, the above expectation takes the form 

 

 E[𝑋 − 𝑢|𝑋 > 𝑢] =
𝜎𝑢
1 − 𝜉

=
𝜎𝑢∗ + 𝜉𝑢

1 − 𝜉
, (3.15) 

 

which is linear in 𝑢 with slope 𝜉 (1 − 𝜉)⁄ .  

 

Given an iid sample 𝑋1, … , 𝑋𝑛, an estimator of Eq. (3.15), say �̂�(𝑢), is the empirical mean 

excess function defined as: 
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 �̂�(𝑢) =
∑ (𝑋𝑖 − 𝑢)𝐼{𝑋𝑖>𝑢}
𝑛𝑢
𝑖=1

∑ 𝐼{𝑋𝑖>𝑢}
𝑛𝑢
𝑖=1

, (3.16) 

 

where 𝐼{𝑋𝑖>𝑢} = 1 if 𝑋 > 𝑢 and 0 otherwise, meaning that it is estimated as the ratio of the sum 

of the exceedances over the threshold and the total number of observations exceeding the 

threshold. The properties of mean excess function are described in Hall and Weller (1981). A 

proper threshold can be obtained by plotting �̂�(𝑢) as a function of the threshold 𝑢 and 

identifying the lowest value of threshold above which �̂�(𝑢) increases approximately linearly. 

This plot has been implemented in practice by Hogg and Klugman (1984); Begueria (2005); 

Sanchez-Arcilla et al. (2008) among others. 

 

 

Threshold stability plot  

 

An alternative graphic technique focuses on the stability of parameter estimates for a range of 

threshold values 𝑢; see Section 4.3.4 of Coles (2001). If a GP model is acceptable for fitting 

the excesses over a threshold 𝑢∗, then for increased thresholds, e.g. 𝑢 > 𝑢∗, the excesses should 

also follow a GP distribution with the same shape parameter at threshold 𝑢∗ and a new scale 

parameter. The scale parameter 𝜎𝑢 is estimated by 𝜎𝑢 = 𝜎𝑢∗ + 𝜉(𝑢 − 𝑢
∗). The modified scale 

parameter can be reparametrized as 𝜎𝑢 − 𝜉𝑢, which is constant with respect to 𝑢. Consequently, 

the estimates of the shape and modified scale parameters remain constant above 𝑢∗, if excesses 

follow the GP distribution with 𝑢∗ being a valid threshold. 

 

Estimates of the shape and the modified scale parameters are plotted against 𝑢 and the 

appropriate threshold corresponds to the lowest threshold value for which these estimates are 

nearly constant. Mean excess and threshold stability plots can be applied simultaneously to 

obtain the optimum threshold. The main drawbacks of the above graphic approaches as a 

method of threshold selection is that they require expertise from the analyst for the 

interpretation of these diagnostics and they can be quite subjective. In addition, as a non-

automated method, it is not suggested when multiple locations need to be examined in the 

context of extreme value analysis.  

 

 

Percentiles 

 

Among the most common rules of thumb used to derive threshold values is the percentiles. In 

the relevant literature, a range of percentiles have been proposed. For instance, Dumouchel 

(1983) suggested the upper threshold of 10%, but with inadequate theoretical justification, 

while Eastoe and Tawn (2012) used the 95th percentile for river flow data. Grabemann and 

Weisse (2008) chose to represent extreme conditions of wind speed and significant wave height 

by applying the 99th percentile while in Arns et al. (2013), percentiles varying between the 97.5th 

and the 99.7th percentile were examined in order to derive the most appropriate threshold for 

water level data from tide gauge records in various locations; the 99.7th percentile was identified 

as the most appropriate for the examined study areas. 

 

 

3.6 Declustering  
 

Regarding the extreme values of metocean parameters, it is valid that if the time step of the 

series is smaller than a typical duration of an extreme event (i.e. storm) then they occur in 

clusters, implying that there is temporal correlation between sequential values. However, in 

order to apply the POT method, it is essential to ensure that there is mutual independence 

between extreme events. The prerequisite of independence is achieved by means of 
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declustering, a method that takes out the dependent observations from a correlated series of 

extreme events so that independent threshold exceedances are extracted reasonably. This 

approach was implicitly applied first by Davenport (1964) and its main principle is to select the 

maximum value between consecutive up- and down-crossings of the mean. Several declustering 

techniques have been developed in the context of extreme value analysis, and the outline of this 

procedure is summarized below:  

 

i. Define clusters of observations in case of consecutive exceedances based on an empirical 

criterion or parametric models (e.g. Markov chain models, Bartlett-Lewis process). 

ii. Identify the highest value in each cluster, called declustered peaks. 

iii. Assume the declustered peaks are independent and fit GPD to these peaks. 

 

It is evident that the definition of the cluster entails some degree of subjectivity or arbitrariness, 

especially when empirical rules are applied, affecting in turn the results. On the other hand, in 

Davison and Smith (1990) it was stated that if a reasonable selection is made as regards the 

average number of clusters per unit time for the identification of clusters then the results seem 

to be insensitive to this precise value. Moreover, Ledford and Tawn (2003) introduced a 

diagnostic tool to evaluate the declustering of a series.  

 

A brief overview of the most commonly used declustering methods for POT models is provided 

below.  

 

 

Runs declustering method 

 

Runs declustering method, described by Smith and Weissman (1994), assumes that successive 

threshold exceedances form a separate cluster as long as their duration does not surpass a set 

run length, i.e. a predefined minimum interval between two successive peaks indicating the 

termination of a cluster. As in the case of the threshold selection 𝑢, there is no formal procedure 

for the selection of run length; thus, in order to avoid improper choices of run length, which 

may lead to bias or high variance, the choice of the run length relies on the common sense 

experience and the physical background that governs the variable of interest. For instance, when 

studying ocean waves variables, the run length should be large enough so that the entire duration 

of fully developed sea states is included. In the relevant literature, a run length of 30h to 96h is 

chosen to ensure independence between the declustered peaks (Morton et al., 1997; Fawcett 

and Walshaw, 2007; Kapelonis et al., 2015; Lerma et al., 2015; Samayam et al., 2017; Santos 

et al., 2017). 

 

 

Intervals declustering 

 

A more sophisticated and automatic declustering scheme was developed by Ferro and Segers 

(2003) with the aim of determining the run length from the data. It is based on the a priori 

estimation of the extremal index 𝜃𝑢, which represents the proportion of the times between 

threshold exceedances that can be considered as the times between independent clusters. A 

review of estimation methods for the extremal index can be found in Ferreira (2018).  

 

The main difference with runs declustering method is that it does not involve any arbitrary 

choice in the process of obtaining independent clusters of exceedances and that the automation 

of the technique lies in the interconnection of threshold selection and declustering, meaning 

that a different extremal index is chosen with changes in the POT threshold. This approach has 

been applied by Acero et al. (2011); Cebrian and Abaurrea (2006) and Della-Marta et al. (2009) 

among others while it was also adopted in this thesis.  
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Declustering Algorithm (DeCA) 

 

In the context of acquiring statistically independent values of significant wave height, a new 

declustering method was developed by Soukissian and Kalantzi (2009) that detects sequences 

of almost independent maxima from the initial time series in hand based on the physical features 

of a sea-state system. Specifically, large wave energy reductions between local maximum and 

subsequent minimum values of significant wave height imply the transition to a different sea-

state system and hence leads to the identification of clusters of extreme events from the data 

series that are independent. After a simple filtering procedure of the initial time series using 

monotonicity for the detection and removal of stationary sequences, the local maxima and 

minima are identified and then the corresponding wave energy differences are calculated. If the 

wave energy reduction is lower than a predefined percentage, then it is considered that the 

examined sea-state system has ended forming thus a separate independent cluster. Again, the 

maximum value within each cluster is extracted to fit the GPD model. A rational selection of 

energy reduction percentage is over 80% that was also adopted in that work. The use of this 

declustering technique can be found in the studies of Soukissian and Arapi (2011). 

 

 

3.7 Including directionality in extreme value estimation  
 

Extremal properties of various environmental parameters have been modelled taking into 

account the directional behaviour as a covariate in order to obtain an integrated and more 

accurate model for the estimation of the corresponding design values. For instance, Moriarty 

and Templeton (1983) estimated extreme wind gusts for six directional sectors by fitting a GEV 

distribution in the design of large buildings. Maximum wind speed as a function of direction 

has also been modelled by Coles and Walshaw (1994), considering a dependence structure 

across directions, because their a priori division leads to correlated directional sectors, and 

adapting techniques developed for spatial extremes. Similar approaches for modelling extreme 

wind speed with a directional dependence structure have been presented by e.g. Simiu et al. 

(1985) and Solari and Losada (2016). A methodology for the appropriate selection of 

uncorrelated directional sectors has been proposed by Folgueras et al. (2019), which reduces 

also the uncertainty in the estimation of design values of wind speed. Sea currents have been 

investigated in the work of Robinson and Tawn (1997) by means of a parametric model for 

extreme current data by handling not only directionality but temporal dependence and non-

stationarity as well.  

 

In a series of papers, Ewans and Jonathan (2006, 2007, 2008) and Jonathan et al. (2008) have 

highlighted the importance of including directionality when studying extreme wave design 

criteria especially in storm-dominated regions. In the above studies, extreme value modelling 

of storm peak significant wave height was based on GP distribution with its unknown 

parameters expressed as a function of direction while a risk-cost approach was proposed for the 

construction of directional design criteria.  

 

 

3.7.1 Extreme value directional model 
 

Let a sample with values for a linear variable 𝑋 along with the corresponding values for the 

directional one, say 𝜃. Assuming that the GP distribution describes the extreme observations 

above a threshold 𝑢, which is considered independent of the directional variable, and according 

to Eq. (3.8), the cdf is given by 

 

 𝐻𝑌𝑗|𝜃𝑗.𝑢(𝑦; 𝜎𝑢, 𝜉) = 1 − (1 +
𝜉(𝜃𝑗)𝑦

𝜎𝑢(𝜃𝑗)
)

−1 𝜉(𝜃𝑗)⁄

, 𝑦 > 0; 𝜎𝑢 > 0, (3.17) 
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for 1 + 𝜉(𝜃𝑗)𝑦 𝜎𝑢(𝜃𝑗)⁄ > 0, where shape and scale parameters are both expressed as functions 

of 𝜃𝑗, with {𝜃𝑗}𝑗=1
𝑛𝑢

. 

 

In the context of estimating the unknown parameters, as noted by Robinson and Tawn (1997), 

it is expected that they vary smoothly with direction; thus, a Fourier series expansion is used 

for the description of this (angular) dependence, which assures a periodic behavior of the 

estimates in terms of the direction. In this respect, the general form of the Fourier series is for 

𝜉 and 𝜎𝑢 

 

 ∑ ∑ 𝐴𝑏𝑘𝑡𝑏(𝑘𝜃)
2
𝑏=1

𝑝
𝑘=0  and ∑ ∑ 𝐵𝑏𝑘𝑡𝑏(𝑘𝜃)

2
𝑏=1

𝑝
𝑘=0 , (3.18) 

 

respectively, where 𝑘 = 0,… , 𝑝 denotes the order of the Fourier model, and 𝑡1, 𝑡2 is the cosine 

and sine function, respectively. For example, the first order Fourier model results in the 

following relationships: 

 

𝜉(𝜃) = 𝐴10 + 𝐴11cos(𝜃) + 𝐴21sin(𝜃) and 𝜎(𝜃) = 𝐵10 + 𝐵11cos(𝜃) + 𝐵21sin(𝜃). 
 

As noted by Jonathan and Ewans (2007), the proper order of the model is determined by the 

directional dependence of the data sample in hand; the more complex the directional 

dependence that characterize the data, the higher the model order is.  

 

The unknown parameters 𝐴𝑏𝑘 and 𝐵𝑏𝑘, 𝑏 = 1,2, 𝑘 = 0,… , 𝑝, are estimated by applying ML 

estimation. The likelihood of the corresponding data sample {𝑌𝑖}𝑖=1
𝑛𝑢  is obtained by 

 

 
L ({𝐴𝑏𝑘}, {𝐵𝑏𝑘}; {𝑌𝑗}𝑗=1

𝑛𝑢
) =∏

1

𝜎𝑢(𝜃𝑗)
(1 +

𝜉(𝜃𝑗)

𝜎𝑢(𝜃𝑗)
𝑌𝑗)

−(1 𝜉(𝜃𝑗)⁄ )−1𝑛𝑢

𝑗=1

, 

 

(3.19) 

 

and the negative log-likelihood (for 𝜉(𝜃𝑖) ≠ 0) by 

 

 ℓ =∑[log𝜎𝑢(𝜃𝑖) + (1 +
1

𝜉(𝜃𝑖)
) log (1 +

𝜉(𝜃𝑖)

𝜎𝑢(𝜃𝑖)
𝑌𝑖)]

𝑛𝑢

𝑖=1

. (3.20) 

 

ML estimates can be determined by setting the partial derivatives of ℓ with respect to 𝐴𝑏𝑘 and 

𝐵𝑏𝑘 set of parameters equal to zero, i.e.  

 

𝜕ℓ

𝜕𝐴𝑏𝑘
=∑{[−

1

[𝜉(𝜃𝑗)]
2(log(1 +

𝜉(𝜃𝑗)

𝜎𝑢(𝜃𝑗)
𝑌𝑗)

𝑛𝑢

𝑗=1

− (1 + 𝜉(𝜃𝑗)) (
𝜉(𝜃𝑗)𝑌𝑗

𝜎𝑢(𝜃𝑗) + 𝜉(𝜃𝑗)𝑌𝑗
))] 𝑡𝑏(𝑘𝜃𝑗)} = 0 

 

and 

 

𝜕ℓ

𝜕𝐵𝑏𝑘
=∑{

1

𝜎𝑢(𝜃𝑗)
[

𝜎𝑢(𝜃𝑗) − 𝑌𝑗

𝜎𝑢(𝜃𝑗) + 𝜉(𝜃𝑗)𝑌𝑗
] 𝑡𝑏(𝑘𝜃𝑗)}

𝑛𝑢

𝑗=1

= 0, 
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respectively.  

 

The design values for a given return period can be estimated by using Eq. (3.13) and replacing 

the constant estimated parameters 𝜉 and �̂�𝑢 with the ones expressed as function of 𝜃. 

 

 

Penalised maximum likelihood 

 

In this thesis, a penalty criterion is recommended for the extreme value estimates to ensure that 

that the directional dependence of 𝜉 and 𝜎𝑢 is sufficiently described and that the solution is 

stable even if either the order of the Fourier model is high or the weighting constant of the 

penalty term is small, as is presented in Section 4.5. This penalty term is based on the absolute 

difference between the estimates and the initial values of the parameters obtained from the 

independent fits calculated using data from successive directional sectors of 45-degree width 

so that 𝜉(𝜃) and 𝜎𝑢(𝜃) are consistent with 𝜉 and 𝜎𝑢 obtained from the independent fits of each 

directional sector. As is discussed in Section 4.5, the minimum number of the 45-width sectors 

with sufficient amount of data should be set, which depends on the order of the Fourier model, 

along with the amount of data of each sector per se. With the inclusion of the penalty term in 

the model fitting, the terms that are not consistent are penalized appropriately. In this case, the 

negative log-likelihood with the penalty term takes the form 

 

 ℓ𝑃 = ℓ + 𝑤 ∑ |𝜗𝑖 − �̂�𝑖|

2(1+2𝑘)

𝑖=1

, (3.21) 

 

where 𝑤 is a constant that gives the appropriate weight for the penalty term in model fitting and 

𝜗𝑖, �̂�𝑖 denote the initial and final values of the unknown parameters, respectively, with 𝑘 

indicating the order of the model. In Ewans and Jonathan (2008), a roughness penalty, selected 

using the cross-validation criterion, was adopted in order to obtain as smooth as possible 

estimates. In Figure 3-3, a preliminary result is presented for two locations, Ligurian and 

Aegean Sea (further analysed in Section 4.5), which shows the instability of a high order Fourier 

model. The solid lines denote the form of the estimated parameters 𝜉 and 𝜎𝑢 obtained from the 

standard ML and the dashed lines denote the penalized version of ML with 𝑤 = 1. These results 

clearly show the instability of the standard ML method when the order of the Fourier model is 

high. For these particular orders, the Fourier model has a better fit compared with the 

independent fits with data from eight consecutive sectors of 45-degree width while the standard 

directional model shows a rather oscillatory behaviour with a poor performance.  

 

The directional extreme value model can be determined if the order of the model 𝑘 is specified 

and the constant 𝑤 is selected. In order to justify whether the inclusion of the directional 

covariates into the model is significant and judge which order of the Fourier model is the most 

adaptable in terms of capturing directional dependence, the likelihood-ratio (LR) test can be 

applied (Coles, 2001; Reiss and Thomas, 2007). This test is widely used when nested models 

are compared. Suppose that the basic model 𝑀0 is nested within model 𝑀1, which is more 

complex (e.g. the zeroth- and first-order directional models, respectively) with values of the 

negative log-likelihood ℓ0 and ℓ1, respectively. The LR test statistic is then expressed as 

 

 𝑇LR = −2(ℓ0(𝑀0) − ℓ1(𝑀1)). (3.22) 

 

Under the null hypothesis that model 𝑀0 is the true model, the distribution of 𝑇LR is evaluated 

by assessing whether the additional complexity of model 𝑀1 leads to a better improvement in 

terms of performance compared to model 𝑀0. The asymptotic distribution of 𝑇LR under the null 

model is a 𝜒𝑘
2 distribution with 𝑘 denoting the degrees of freedom equal to the difference among 

the number of the models parameters. As long as the sample size is reasonably large, it is 
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common to assume that this distribution is valid for finite samples as well. Consequently, the 

null hypothesis is rejected at the 𝛼 level of significance if 𝑇LR exceeds the (1 − 𝛼) quantile of 

the 𝜒𝑘
2 distribution. Hence, model 𝑀1 is selected in favour of model 𝑀0. 

  

(a) (b) 

Figure 3-3. Estimated parameters 𝜉 and 𝜎𝑢 for (a) a 5th and (b) a 4th order Fourier model 

with the consideration of the penalty term (dashed line) and without (solid line). Circles 

represent the estimates from the independent fits of the 45-degree sectors. 

Given the order of the Fourier model for 𝜉(𝜃) and 𝜎𝑢(𝜃), the constant 𝑤 has to be set. This 

selection is based on the distance between the values of the estimated parameters 𝜉 and 𝜎𝑢 from 

the independent fits and the corresponding ones from the directional model. The statistical 

metric that was selected due to the fair treatment of positive and negative differences is the 

mean absolute error. The optimum value for 𝑤 is selected when the metric is minimized for 

both parameters simultaneously.  

 

An example on the decision of the order of the Fourier model through the LR test and the 

selection of the constant 𝑤 through the mean absolute error is provided for an offshore location 

in the Ligurian Sea with geographical coordinates (43.25°N, 9.75°E). The particular location 

(called hereafter Ligurian) was selected in order to have sufficient data for all directional sectors 

of width 45° and assess more reliable the directional model. The pairs of models used to perform 

the LR test are 𝐺0 with 𝐺1, 𝐺1 with 𝐺2, 𝐺2 with 𝐺3, and 𝐺3 with 𝐺4. The first pair is used in 

order to verify whether the use of directional model is rational for the data examined and the 

rest pairs to assess the performance of each order. The critical value corresponding to 𝜒𝑘
2 for 

𝛼=0.05, with which the 𝑇LR is compared to, is the same for each case and equal to 9.4877, since 

the difference in the number of parameters remains the same (i.e. 𝑘=4) for each comparison. 

The obtained results are presented in Table 3-1 with all models being evaluated with 𝑤=1. 

Changes in 𝑤 do not alter the result qualitatively. Based on the values of 𝑇LR, compared to the 

critical one, with the smallest 𝑝 −value, the third order directional model seems to be the most 

appropriate for Ligurian. Let us note that there is weak evidence to accept the null hypothesis 

for the comparison between 𝐺0 and 𝐺1, since the 𝑝 −value is rather high denoting high 

uncertainty of the result.  

In Figure 3-4, the functional forms of the estimated parameters for the first up to the forth order 

of the directional model is presented along with the corresponding estimates from the data 

obtained from successive directional sectors of width 45°. This outcome also verifies the above 

result; the third order model outperforms the first and second order models while the difference 

with the fourth model is rather unnoticeable. For 𝑤=0.18, the minimum value of mean absolute 

error for both estimated parameters is obtained as shown in Figure 3-5. The above results are 
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obtained for the 95th percentile as regards threshold selection and the intervals declustering 

method.  

 

Table 3-1. Value of 𝑇𝐿𝑅 along with the corresponding 𝑝 −value for various directional 

model comparisons for Ligurian Sea. 

Pairs compared 𝑻𝐋𝐑 𝒑 −value 

𝐺0 and 𝐺1 0.332 0.9877 

𝐺1 and 𝐺2 39.508 10-8 

𝐺2 and 𝐺3 56.606 10-11 

𝐺3 and 𝐺4 21.414 10-4 

 

 

Figure 3-4. Directional model of 1st, 2nd, 3rd and 4th order along with the independent fits 

from the successive directional sectors of 45-degree width for Ligurian Sea. 

 

Figure 3-5. MAE values for various weights for Ligurian Sea. 

 

 

3.7.2 Parameter uncertainty  
 

Based on the expressions of the Fourier series for the estimation of 𝜉 and 𝜎𝑢, the corresponding 

asymptotic variances can be calculated so that confidence intervals for the unknown parameters 
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can be derived. The asymptotic covariance matrix of a ML estimator is provided by the inverse 

of the (observed) information matrix 𝐼𝐴 = 𝐸[𝜕
2ℓ 𝜕𝐴𝑏𝑘𝜕𝐴𝛽𝜅⁄ ] and 𝐼�̂� = 𝐸[𝜕

2ℓ 𝜕𝐵𝑏𝑘𝜕𝐵𝛽𝜅⁄ ], 

which is actually the Hessian matrix (i.e. the matrix of the second derivatives of ℓ). The standard 

errors, 𝑆𝐸𝐴 and𝑆𝐸�̂�, are the square roots of the diagonal elements of the asymptotic covariance 

matrix. Thus, the 100(1 − 𝛼)% confidence intervals of the parameters {𝐴𝑏𝑘}𝑏=1,𝑘=0
2,𝑝

 and 

{𝐵𝑏𝑘}𝑏=1,𝑘=0
2,𝑝

 are obtained, respectively, by: 

 

 �̂�𝑏𝑘 ± 𝑧𝛼 2⁄ 𝑆𝐸𝐴 and �̂�𝑏𝑘 ± 𝑧𝛼 2⁄ 𝑆𝐸�̂�, (3.23) 

 

where 𝑧𝛼 2⁄  is the desired critical value (e.g. for 95% confidence interval 𝑧𝛼 2⁄ = 1.96). The 

above description is valid provided that the values of 𝜉 fluctuate below 1 2⁄ . Non-regular cases 

(i.e. for 𝜉 ≥ 1 2⁄ ) are not considered in this thesis. 

 

An alternative method for obtaining confidence intervals associated with the estimated 

parameters is through bootstrapping, introduced by Efron (1979) for samples collected under 

an independent framework. In extreme value analysis, typically bootstrap method is used in its 

non-parametric version (i.e. with no assumptions on the distribution of the available sample), 

and resample the original sample, while the parametric one simulates ‘new’ data from the 

estimated model); the former case is described in this section. Bootstrapping requires random 

resampling with replacement from the initial sample to obtain ‘new’ subsamples and construct 

confidence intervals for the parameters without assuming a specific parametric distribution, 

rendering the process quite straightforward, both algorithmically and numerically. Various 

bootstrap methods have been reviewed by Tajvidi (2003) for the construction of confidence 

intervals for the GP distribution parameters and quantiles and it was concluded that for small 

sample sizes none of the bootstrap methods gives satisfactory results. Moreover, Coles and 

Simiu (2003) proposed an empirical correction of the bootstrap estimates, based on a bias 

correction to the bootstrap parameter estimates, since there is a tendency of the bootstrap 

procedure to provide generally shorter tails than the one from the original time series. In this 

respect, the bias-corrected and accelerated (BCA) bootstrap method, developed by Efron 

(1987), is applied since it attempts to correct for both bias and skewness in the distribution of 

bootstrap estimates; for more details, see Efron and Tibshirani (1993).  

 

Suppose that ℎ is the parameter of interest and let us denote by ℎ̂∗ a bootstrap replication of ℎ̂ 

obtained by resampling with replacement from the original data sample. The underlying 

assumption of BCA method is that a monotone transformation 𝜙 = 𝑚(ℎ) exists such that 

�̂�~𝑁(𝜙 − 𝑧0(1 + 𝑎𝜙), (1 + 𝑎𝜙)
2), where 𝑧0 and 𝑎 are the bias-correction and acceleration 

constants, respectively. The former constant is related to the proportion of bootstrap estimates 

that are less than the corresponding estimate of the original sample and its estimate can be 

provided by 

 

 �̂�0 = Φ
−1 {

#ℎ̂∗(𝑟) < ℎ̂

𝑅
}, (3.24) 

 

with Φ denoting the standard normal cumulative distribution function and 𝑟 = 1,2,… , 𝑅 

denoting each bootstrap sample with total number of bootstrap samples 𝑅. The latter correction 

is proportional to the skewness of the bootstrap distribution and can obtained by the jackknife 

method. Let ℎ̂(𝑖), 𝑖 = 1,… , 𝑛, denote the value of the estimate based on the entire original data 

sample apart from the 𝑖 −th observation. An estimate of the acceleration constant is given by 

 

 �̂� =
∑ (ℎ̂(∙) − ℎ̂(𝑖))

3𝑛
𝑖=1

6 [∑ (ℎ̂(∙) − ℎ̂(𝑖))
2𝑛

𝑖=1 ]
1.5, (3.25) 
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where ℎ̂(∙) = 𝑛
−1∑ ℎ̂(𝑖)

𝑛
𝑖=1 . 

 

Having the values of �̂�0 and �̂�, the interval of BCA method is given by (ℎ̂(𝛼1), ℎ̂(𝛼2)), where 

𝛼1 = Φ(�̂�0 +
�̂�0+𝑧

(𝛼)

1−�̂�(�̂�0+𝑧
(𝛼))
) and 𝛼2 = Φ(�̂�0 +

�̂�0+𝑧
(1−𝛼)

1−�̂�(�̂�0+𝑧
(1−𝛼))

) with 𝑧(𝛼) the 100𝛼 −th 

percentile point of a standard normal distribution. 

 

Given the original (random) sample of pairs of one linear and one directional variable (𝑥, 𝜃), 
say {𝑠𝑖}𝑖=1

𝑛 , the procedure of the adopted bootstrapping is summarized in the following steps 

for estimating the confidence intervals of the extreme value parameters: 

 

Step 1: Estimate the unknown parameters (�̂�𝑢, 𝜉) of the GP distribution (as functions of 𝜃) 

from the initial sample using the ML method described above. 

Step 2: Create 𝑟 (random) samples {𝑠𝑖
(𝑟)
}
𝑖=1

𝑛
, 𝑟 = 1,… , 𝑅, by random resampling with 

replacement from the initial sample and obtain the estimates (�̂�𝑢
∗, 𝜉∗).  

Step 3: Repeat step 2 for a large number 𝑅 (of the order of 1000 or more). 

Step 4: Estimate the two constants of BCA bootstrap method, �̂�0 and �̂� for each unknown 

parameter. Then estimate the lower and upper limits �̂�𝑢
(𝛼1), 𝜉(𝛼1) and �̂�𝑢

(𝛼2), 𝜉(𝛼2) , 
respectively.  

 

The same method can be applied to derive confidence intervals for return level 𝑥𝑇. 
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Chapter 4 Metocean climate modelling and analysis with 

applications in ocean energy assessment 

4.1 General  
 

Analysis and accurate description of metocean variables and their corresponding climatology 

is fundamental for many research purposes while it is involved in a variety of applied 

disciplines. Some of the most common cases include the assessment of marine energy resource, 

e.g. offshore wind (see, for example, Koletsis et al. (2016)) and wave (Cuttler et al., 2020), air 

and water pollution dispersion (Ramšak et al., 2013), weather routing along long-distance 

maritime routes (Perera and Soares, 2017), port infrastructure design and operation of offshore, 

nearshore and coastal structures (Sierra et al., 2017), coastal morphodynamics (Casas-Prat et 

al., 2016) and coastal zone management policies (Serafim et al., 2019) and marine ecosystems 

(Calvo et al., 2011). For such assessment studies, long-term data sets are required. The 

information contained in long-term metocean time series is important for assessing their 

variability, identifying potential correlations between two (or more) climatic variables, 

estimating extremes and design values, etc. Furthermore, the study of one metocean variable 

can shed light on the behaviour of other ones; for instance, atmospheric climate changes are 

likely to be reflected in the ocean surface physical characteristics (wind-driven circulation, 

Ekman transport) and the regional climate signal (e.g. water cycle, drought events, temporal 

variability) as well (Huang and McElroy, 2015). 

 

As already mentioned, apart from the linear metocean characteristics, the corresponding 

directional features are also characterized by their inherent variability and their association 

structure with linear variables, thus they play an important role in many engineering and 

metocean studies. For example, in the context of ocean energy assessment studies which is the 

central core of applications presented in this chapter, directional parameters are involved, 

among others, in the micro-siting of offshore wind and wave farms (Song et al., 2016; 

Moarefdoost et al., 2017), the developing technology of floating wind turbines (Bachynski et 

al., 2014), the performance of wave energy converters for an accurate assessment of wave 

energy (Carballo et al., 2014) and fatigue analysis of offshore structures (Horn et al., 2018). 

Hence, the importance of analysing and modelling directional variables is evident, although the 

corresponding literature is either rather poor yet or often confined to the provision of standard 

rose plots.  

 

This chapter consists of case studies coming from the fields of long-term climate modelling of 

metocean variables and marine renewable energy, and deals with real-world wind and wave 

data sets as described in Appendix E. Each section discourses topics related to the theoretical 

background of probabilistic modelling elaborated in Part I. Specifically, Section 4.2 presents 

an integrated approach for climate analysis and variability of wind speed and direction, Section 

4.3 deals with the application of regression and calibration models for wind speed (under the 

presence of outliers) and wind direction data coming from different sources. Section 4.4 

evaluates different bivariate models for the joint description of wind speed and direction and 

provides suggestions for the use of parametric and non-parametric models. Finally, Section 4.5 

applies the directional extreme value analysis, a modification in the estimation of parameters 

of a directional extreme value model based on a penalised likelihood criterion is proposed and 

a thorough investigation of various methods of threshold selection and declustering is provided. 

At the time of presenting this thesis, the results presented in Sections 4.2, 4.3.2 and part of 4.4 

have been published in three scientific journals, results from Section 4.3.3 have been published 

in the proceedings of a well-established international conference (International Ocean and Polar 

Engineering Conference) and from Section 4.5 have been submitted for publication.  
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4.2 Wind climate analysis and variability  
 

4.2.1 Synopsis 
 

In this section, the long-term offshore wind characteristics of the Mediterranean Sea are 

assessed based on a 36-year reanalyses data obtained by the ERA-Interim database. In order to 

identify the systematic wind flow patterns and reveal the general features of the wind 

climatology patterns, the wind climate analysis consists of the study of: i) the spatio-temporal 

behaviour (including variability characteristics) of wind speed and direction for the annual time 

scale; ii) the joint association of wind speed and direction for the annual time scale, and; the 

wind speed trends and wind direction changes. In the context of a climate assessment study, the 

analysis of wind direction changes are presented here for the first time.  

 

The results of this analysis, along with other outcomes and discussion considering the monthly 

scale, have been published in:  

Soukissian, T., Karathanasi, F., Axaopoulos, P., Voukouvalas, E.G., Kotroni, V., 2018. 

Offshore wind climate analysis and variability in the Mediterranean Sea. International 

Journal of Climatology 38: 384–402. 

 

 

4.2.2 Short description of the study area description 
 

The Mediterranean Sea, shown in Figure 4-1, is a semi-enclosed basin characterized by various 

geomorphological and topographical features with complex coastlines and local orography that 

influence the wind climatology both spatially and temporally. Some typical regional wind 

features occurring in the Mediterranean Sea are the following: Mistral, Tramontane, Bora, 

Sirocco, Etesian, Levante, Poniente, Leveche, etc. For a detailed description of the main 

Mediterranean winds, see Zecchetto and Cappa (2001) and references therein.  

 

Apart from the aforementioned regional and local climatic features, the interaction of the 

airflow with the complex coastal orography, and the Mediterranean basin itself, plays also a 

significant role in the definition of the weather patterns, including the precipitating systems, the 

development of cyclones, etc. The Mediterranean Sea is one of the most cyclogenetic areas in 

the world (Flaounas et al., 2015), where explosive cyclogenesis (Lagouvardos et al., 2007) and 

tropical-like cyclones also occur (Tous and Romero, 2013). 

 

Figure 4-1. The Mediterranean Sea divided into 11 sub-basins that are mentioned throughout 

the subsequent analysis (the background of the map has been derived from Google Earth). 
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4.2.3 Wind speed and wind direction climate 
 

The notation of the following sections is introduced in Appendix B. The realizations of the 

linear variable 𝑋 correspond to wind speed, denoted by 𝑢𝑖, and the corresponding realizations 

of the directional variable (i.e. wind direction) are denoted by 𝜃𝑖. All the results refer to the 

annual time scale. The analysed data come from the ERA-Interim dataset with horizontal spatial 

resolution of approximately 80 km covering the period 1979–2014; for more details, see 

Appendix E.3. 

 

The spatial distribution of the mean annual wind speed and wind direction are presented in 

Figure 4-2. The windiest areas of the Mediterranean Sea are the Gulf of Lion, the area 

surrounding the longitudinal axis of the Aegean Sea, the S Levantine Basin, the belt extending 

from the E Algerian Basin up to the Gulf of Gabes as well as the Alboran Sea. The overall 

highest mean annual wind speed is observed for the offshore area of the Gulf of Lion (7.4 m/s 

with corresponding mean wind direction 320.9°) and the second highest is observed for the 

central Aegean Sea (7.2 m/s with corresponding mean wind direction 4.0°). Regarding the wind 

directional patterns, they are fairly comparable with the results provided by Zecchetto and De 

Biasio (2007) for the period 2000–2004. Specifically, the analysis revealed many typical 

regional scale wind patterns such as the easterly Levanter wind in the Alboran Sea and the 

northeasterly (cold) Bora in the Adriatic Sea. The identification and quantification of these 

patterns contributes to the identification of ocean circulation patterns in the corresponding 

areas. 

 

 

4.2.4 Association between wind speed and wind direction 
 

In Figure 4-3, the spatial distribution of the linear–circular correlation coefficient 𝑟𝑢𝜃
2  (see 

Appendix A.3 for the mathematical definition) between annual mean wind speed and annual 

mean wind direction is depicted. The highest values of 𝑟𝑢𝜃
2  are observed across the eastern 

coasts of N Levantine Basin, the Gulf of Lion, the SE Alboran Sea, the SE Algerian Basin, the 

northern and eastern coasts of the Adriatic Sea, the W Balearic and S Tyrrhenian Seas, the 

southern part of the S Levantine Basin as well as the Aegean Sea, reaching values between 0.34 

and 0.37. The analysis at the monthly temporal scale showed that there is a strong linear 

association between wind speed and direction in the Aegean Sea and the Gulf of Lion, mainly 

for June, July, August and September. For the Aegean Sea, this behaviour can be attributed to 

the prevalence of the Etesians that blow persistently and intensively mainly during these 

months. 

 

Figure 4-2. Spatial distribution of mean annual wind speed and wind direction over the 

Mediterranean Sea. 
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Figure 4-3. Spatial distribution of linear–circular correlation between wind speed and 

direction over the Mediterranean Sea on an annual basis. 

 

 

4.2.5 Wind speed trend 
 

The assessment of annual mean values for the estimation of linear slope for a seasonal series is 

supported by Withers and Nadarajah (2015). The authors suggest the use of annual mean values 

if data with duration equal to or longer than 5 years are available. The linear trend provides a 

quantification of the tendency of the mean intensity of wind fields in the examined time horizon. 

The parameter of main interest that quantifies the linear trend rate is the slope, i.e. the rate of 

wind speed change per unit time. In this analysis, the Theil-Sen linear estimation is adopted for 

the evaluation of the sought-for slope. This non-parametric estimator is less sensitive in 

departures of data from normality and less affected by the presence of outliers in the examined 

time series. In order to test the existence of a monotonic trend, the non-parametric Mann-

Kendall test was adopted; see also Appendix B.6. The obtained results describe whether the 

statistical characteristics of wind speed tend to increase (positive values of the slope), decrease 

(negative values of the slope) or remain almost constant (slope close to zero) in the examined 

time scale.  

 

In Figure 4-4, the spatial distribution of the linear slope of the annual mean wind speeds 

𝑚𝑢,𝑌(𝑗), 𝑗 = 1,2, . . , J, is depicted for the period 1979–2014. The dotted areas are characterized 

by statistically significant trends according to the Mann-Kendall test. The largest positive slopes 

are observed in the Ionian Sea (0.0159 m/s/year), the N Tyrrhenian and N Adriatic Seas, the 

eastern part of the Algerian Basin up to Balearic Isl. and the western part of the S Levantine 

Basin (between Crete Isl. and Africa). The overall minimum negative slope is observed offshore 

the coasts of Monaco in the Ligurian Sea (−0.023 m/s/year) while milder negative slopes appear 

also in the central Aegean Sea (−0.014 m/s/year), the E Alboran Sea and the N Levantine Basin. 

The long-term decrease of wind speed in the central Aegean Sea is in agreement with the results 

found by Poupkou et al. (2011).  

 

The results from the wind speed trend analysis are in qualitative agreement with the ones from 

previous studies, although the spatial and temporal extent, and the source of the considered 

datasets may vary. For instance, Aarnes et al. (2015) investigated, among others, trends of 

global marine winds between 1979 and 2012 using also the ERA-Interim reanalysis dataset; the 

results for the trends in the Mediterranean Sea, presented in Figure 5(f) of Aarnes et al. (2015) 

are qualitatively in agreement with the ones presented in Figure 4-4. 
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Figure 4-4. Spatial distribution of annual mean wind speed linear slope (in m/s/year) over the 

Mediterranean Sea. Dotted areas exhibit statistically significant trends. 

 

 

4.2.6 Variability characteristics of wind speed and wind direction 
 

The spatial distribution of mean annual variability is depicted in the upper panel of Figure 4-5. 

The highest variability within each year is exhibited in the northern part of the Adriatic Sea 

(68%), as well as the Ligurian, Tyrrhenian (especially offshore the northern coasts of Sicily), 

N Aegean and W Balearic Seas, and the Gulf of Antalya. According to Zecchetto and De Biasio 

(2007), the large wind speed variability in the Mediterranean Sea occurs in places swept by 

winds from the neighbouring land, like in the Adriatic Sea where Bora orographic downslope 

winds blow from Croatia, Slovenia and Montenegro, in the Ligurian Sea where winds blow 

from the coasts of France and Italy, over the N Aegean Sea and in the Gulf of Antalya. The 

spatial patterns depicted in this figure are in agreement with the patterns shown in Figure 3 of 

Zecchetto and De Biasio (2007).  

 

In the lower panel Figure 4-5, the spatial distribution of inter-annual variability is shown. The 

strongest inter-annual signal appears in the W Ligurian Sea reaching values of the order of 

7.25%. Other areas of relatively high inter-annual variability are the N Adriatic, Tyrrhenian and 

Balearic Seas, the Gulf of Lion, the S Algerian Basin and the Ionian and central Aegean Seas. 

 

The angular variance of annual mean wind direction is depicted in Figure 4-6. In a large extent, 

the Mediterranean Sea is characterized by rather low values of angular variance fluctuating 

between 0.0 and 0.2. However, there are some areas that exhibit relatively high values (well 

above 0.4), namely the western part of the Alboran and Balearic Seas, the S Algerian Basin, the 

N Ligurian Sea and NW and S Adriatic Sea. The overall highest value of angular variance 

(0.975) is observed in the western part of Majorca Isl., and in the Ligurian Sea, eastern of 

Monaco (0.9) suggesting a highly fluctuating wind direction. Notice that for the area offshore 

the Gulf of Genoa, high variability of both wind speed and direction is observed. 
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Figure 4-5. Spatial distribution of mean annual variability (upper panel) and inter-annual 

variability (lower panel) of wind speed over the Mediterranean Sea. 

 

 

4.2.7 Wind speed and direction changes 
 

In this subsection, the mean values of year-to-year angular distance of wind direction are 

provided. In order to quantify the wind direction changes, the year-to-year angular distance 

Δ𝜃𝑌=𝑗 is introduced, which is defined as: 

 

Figure 4-6. Spatial distribution of angular variance of annual mean wind direction over the 

Mediterranean Sea. 
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 |Δ𝜃𝑌=𝑗| = min(|𝜃𝑌=𝑗+1 − 𝜃𝑌=𝑗|mod2𝜋, 2𝜋 − |𝜃𝑌=𝑗+1 − 𝜃𝑌=𝑗|mod2𝜋),  (4.1) 

 

and bounded in [−𝜋, 𝜋], with  

 

 {

Δ𝜃𝑌=𝑗 ≥ 0,                                               if 𝜃𝑌=𝑗 ≤ 𝜃𝑌=𝑗+1 < 𝜃𝑌=𝑗 + 𝜋

Δ𝜃𝑌=𝑗 < 0,     if 𝜃𝑌=𝑗 − 𝜋 < 𝜃𝑌=𝑗+1 < 𝜃𝑌=𝑗 or 𝜃𝑌=𝑗+1 > 𝜃𝑌=𝑗 + 𝜋 

Δ𝜃𝑌=𝑗 = (𝜃𝑌=𝑗+1 − 𝜃𝑌=𝑗)mod2𝜋,                                   if Δ𝜃𝑌=𝑗 = 𝜋,

 (4.2) 

 

for 𝑗 = 1,2,… , J − 1, where 𝜃𝑌=𝑗 and 𝜃𝑌=𝑗+1 denote the mean wind direction for years 𝑗 and 

𝑗 + 1, respectively. 𝑧 mod𝑤 denotes the remainder when 𝑧 is divided by 𝑤. Farrugia et al. 

(2009) provided a simpler expression for the estimation of Δ𝜃𝑌=𝑗, given by 

 

 Δ𝜃𝑌=𝑗 = 2 tan
−1{tan[0.5(𝜃𝑌=𝑗+1 − 𝜃𝑌=𝑗)]}, (4.3) 

 

Eq. (4.3) provides a signed value of Δ𝜃𝑌=𝑗, for a particular year 𝑗, indicating the direction of 

rotation, i.e. clockwise (positive sign) or anticlockwise (negative sign). In the same way, 

angular distances for other temporal scales can be defined. Δ𝜃𝑌=𝑗 is a random variable 

following a particular stochastic structure that, in the spatial domain, can be described through 

the corresponding mean value Δ𝜃𝑌. 

 

In Figure 4-7, the spatial distribution of the mean year-to-year angular distance Δ𝜃𝑌 is 

presented, where clockwise (anticlockwise) rotation indicates areas with positive (negative) 

angular distance. In general, in most areas of the Mediterranean Sea, Δ𝜃𝑌 takes low absolute 

values. Areas of Balearic, Ligurian, Tyrrhenian and Alboran Seas exhibit the most evident 

extreme values of Δ𝜃𝑌. The overall extreme values (i.e. −37° and 99.7°) are encountered in the 

Ligurian/Tyrrhenian and Tyrrhenian Seas, respectively. In the Balearic Sea the corresponding 

values are −35.8° and 16.8°, respectively, while in the Alboran and Adriatic Seas the extreme 

values of Δ𝜃𝑌 are −8.7° and −9°, respectively.  

 

A comparison of the patterns from Figure 4-7 and Figure 4-6 reveals many similarities between 

them; areas characterized by high values of angular variance are also characterized by high 

values of angular distance. Comparing the results of Figure 4-4 and Figure 4-7, it is observed 

that some of the areas mentioned above exhibit simultaneously significant slopes of wind speed 

and year-to-year angular distances, namely the Ligurian and Tyrrhenian Seas. For instance, at 

the area around 43.25°N, 8.5°E, wind speed exhibits a long-term rate of change close to −0.016 

m/s/year, while the corresponding year-to-year angular distance of wind direction is of the order 

of −33°.  

 

Figure 4-7. Spatial distribution of signed mean year-to-year angular distance over the 

Mediterranean Sea. 
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Another type of results presented here refers to the segmentation of the available time in time 

segments of 10 years, and the estimation of the relative change between the first and the last 

decade. Specifically, for wind speed the following quantity is estimated  

 

 𝛿𝑚𝑢
𝛪,𝛪𝛪 =

𝑚𝑢,𝑌𝐼𝐼 −𝑚𝑢,𝑌𝐼

𝑚𝑢,𝑌𝐼𝐼

, (4.4) 

 

where 𝑚𝑢,𝑌𝐼  denotes the mean annual value of wind speed obtained for 1979–1988, and 𝑚𝑢,𝑌𝐼𝐼  

denotes the corresponding value for 2005–2014 in the results presented in this subsection.  

 

Regarding wind direction, the angular difference between the mean annual values for the first 

and last decade of the time series is also provided. The angular difference is defined as follows: 

 

 𝛿𝜃𝛪,𝛪𝛪 = min[|𝑚𝜃,𝑌𝐼𝐼 −𝑚𝜃,𝑌𝐼|, 360 − |𝑚𝜃,𝑌𝐼𝐼 −𝑚𝜃,𝑌𝐼|], (4.5) 

 

where |∙| denotes the absolute value operator, 𝑚𝜃,𝑌𝐼 denotes the mean annual wind direction for 

the period 1979–1988, and 𝑚𝜃,𝑌𝐼𝐼  the corresponding value for the period 2005–2014. Eq. (4.7) 

provides the absolute difference between the mean annual wind directions corresponding to the 

examined decades, while 𝛿𝜃𝛪,𝛪𝛪 is bounded within [0,180]. 𝛿𝜃𝛪,𝛪𝛪 is a gross characteristic of the 

wind direction change between long-term time periods. Such information is valuable in the 

offshore wind energy industry and relevant fields of activity, while it could be also used as a 

potential indication of more significant environmental changes. 

 

The spatial distribution of 𝛿𝑚𝑢
𝛪,𝛪𝛪

 is depicted in Figure 4-8. In order to secure the statistical 

validity of the results, the non-parametric Mann-Whitney U test has been applied. The null 

hypothesis that is tested is whether the examined samples (i.e. the mean annual values of wind 

speed from the first and the last decade) come from the same population. The use of the Mann-

Whitney U test against the standard t-test is justified by the fact that the former test can be 

applied on unknown distributions in contrast to the latter test that can be applied only to samples 

from normal populations. In this figure, only the locations with critical p-values less than 0.05 

are presented. For these areas, the p-values suggest the rejection of the assumption that the two 

samples come from the same population or have the same means. Therefrom, it can be 

concluded that, for the particular areas, the estimated relative wind speed changes are 

statistically significant. These areas are the N Adriatic Sea (Gulf of Venice, where the relevant 

increase of wind speed reaches values up to 10.2%), the S Ionian Sea (the relevant increase of 

wind speed reaches values up to 7.1%), the area offshore the Gulf of Genoa (the relevant 

decrease of wind speed reaches values up to –13.5%, which, in absolute terms, is the greatest 

change observed in the entire Mediterranean), the central Aegean Sea, particular areas in the N 

and E Tyrrhenian Sea, as well as some spots at the western and eastern part of the S Levantine 

Basin, part of the E Algerian Basin and the southern part of the central Mediterranean Sea, and 

the area between the northern coasts of Cyprus and the coasts of Turkey. 

 

As already mentioned, studies on the long-term change of the wind flow over the whole 

Mediterranean are not available. The results presented here are in agreement with the results 

found specifically over the Aegean by Poupkou et al. (2011). Indeed the authors performed a 

trend analysis of the Etesian winds over the Aegean based on 31-year reanalyses data and they 

also found a negative trend in the frequency and wind speed of the Etesians. 

 

In Figure 4-9, the spatial distribution of 𝛿𝜃𝛪,𝛪𝛪 is presented. Again, in order to secure the 

statistical validity of the results, the areas depicted in this figure are those with critical 

𝑝 −values of the Mardia-Watson-Wheeler test (see Appendix B) less than 0.05. The null 

hypothesis that is tested is whether the examined samples (i.e. the mean annual values of wind 

direction from the first and the last decade) have identical circular distributions regarding mean 

direction, circular variance or both. For these areas, the 𝑝 −values suggest the rejection of the 
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assumption that the two samples come from the same population or have the same means. 

Therefore, it can be concluded that, for the areas depicted in Figure 4-9, the estimated angular 

differences are statistically significant.  

 

Figure 4-8. Spatial distribution of the relative change of mean annual wind speed between 

the first (1979–1988) and the last (2005–2014) decade of the available time series over the 

Mediterranean Sea. White colour denotes the areas where this relative change is not 

statistically significant based on Mann-Whitney U test. 

According to Figure 4-9, the statistically most significant decadal angular differences occur in 

the northwestern part of the Adriatic Sea (angular differences up to 168°), the W Balearic Sea 

(angular differences up to 148°), and across the longitudinal axis of the W Adriatic Sea (around 

70°). Milder differences (of the order of 10° to 30°) are observed for the extended area between 

the eastern part of the central Mediterranean Sea and western part of S Levantine Basin, NE 

Aegean Sea, N and NE of the S Levantine Basin, specific areas around S Italy, W Algerian 

Basin, and some spots north of Corsica (Ligurian Sea) and south of Sardinia (Tyrrhenian Sea). 

Let us note that although the magnitude of the relative change of mean annual wind direction 

for the examined decades is of primary concern, it seems that there is a systematic wind 

direction shift from NE to S in the Balearic Sea, while the corresponding shift in the Adriatic 

Sea is not unidirectional. Furthermore, an analysis between the first (1979–1988) and the right 

next decade (1989–1998), that is not presented here, reveals two localized areas that are not 

present during the examined decades: W Alboran Sea, with relative changes up to 80°, and SE 

N Levantine Basin, with relative changes up to 15°. 

 

Figure 4-9. Spatial distribution of the angular change of mean annual wind direction 

between the first (1979–1988) and the last (2005–2014) decade of the available time series 

over the Mediterranean Sea. White colour denotes the areas where this relative change is 

not statistically significant based on Mardia-Watson-Wheeler test. 
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Overlapping the results of Figure 4-8 and Figure 4-9, it is observed that some particular areas 

exhibit statistically significant decadal changes both in wind speed and direction, namely a 

northern part of the Adriatic Sea, a southern part of the Ionian Sea, western of the Sea of 

Marmara, the western part of the S Levantine Basin (extending across the 33rd parallel North), 

a region offshore the Gulf of Genoa (Ligurian Sea) and north of Cyprus Isl. Summing up, the 

above results suggest that part of the observed wind variability in the specific areas could be 

attributed to the long-term change of wind direction patterns and not only on wind speed 

changes. This behaviour has also effects on wave propagation patterns and sea state intensities, 

since it also alters the corresponding fetch lengths and probably fetch durations. However, it 

would be risky to provide an explanation for the particular behaviour of wind direction in these 

areas due to the complex interactions and nature of the climatic system. Potential global 

warming effects could be one reason, since random fluctuations of wind direction, except for 

wind speed, may be caused for small-scale regions over short-term time scales. 

 

 

4.2.8 Final comments 
 

This study provides an overview of the linear and directional wind climate for the 

Mediterranean Sea, providing also some additional statistical characteristics such as wind 

variabilities, angular distances, and inter-decadal directional changes extending over the entire 

spatial scale of the examined basin, for the first time. Summarizing the major findings of this 

work, the following general conclusions can be drawn: 

 

 Regarding wind speed variability, the areas that exhibit high values of mean annual and 

inter-annual variability are the N Adriatic, Tyrrhenian, Ligurian, Balearic, Ionian and 

Aegean Seas.  

 Regarding wind direction variability, the W Mediterranean Sea (Ligurian, Tyrrhenian, 

Balearic and Alboran Seas) is characterized by high values of variance unlike the rest 

part of the basin.  

 In terms of wind speed trend, positive values of slope throughout the examined period 

are observed in the Ionian, N Tyrrhenian and N Adriatic Seas, the eastern part of the 

Algerian Basin and the offshore area between Crete Isl. and Africa; large negative 

values are evident in the Ligurian and central Aegean Seas.  

 In terms of angular distance, most areas of the Mediterranean Sea are characterized by 

low absolute mean values except for the Balearic, Ligurian and Tyrrhenian Seas. 

 Regarding inter-decadal changes of wind speed, the highest positive decadal difference 

corresponds to the northern part of the Adriatic Sea (up to 10.2%) followed by the 

southern part of the Ionian Sea (up to 7.1%), while the highest negative decadal 

difference corresponds to the area offshore the Gulf of Genoa (up to –13.5%). 

 Regarding inter-decadal changes of wind direction, the most significant directional 

differences are located in the northwestern part of the Adriatic Sea (up to 168°), the W 

Balearic Sea (up to 148°), and across the longitudinal axis of the W Adriatic Sea 

(around 70°). 

 There is a simultaneous long-term large change of both mean annual wind speed and 

direction during the examined decades in a northern part of the Adriatic Sea, a southern 

part of the Ionian Sea, western of the Sea of Marmara, the western part of the S 

Levantine Basin (extending across the 33rd parallel North), a region offshore the Gulf 

of Genoa (Ligurian Sea) and north of Cyprus Isl. 

 

Since wind speed trends and angular distances are evident, it is rational to assume that the 

underlying variations may be attributed to the distribution of high wind speeds through the 

changes in the occurrence of high impact weather related with wind storms, that is difficult to 

quantify; however, the reason behind these changes cannot be determined accurately in the 

context of this analysis nor the involved physical processes. On the other hand, large angular 
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distances for wind direction are expected to affect wave propagation schemes and the 

interdependent environmental phenomena. Finally, a longer-term data set could highlight 

whether the estimated variabilities and trends have a steady behaviour or constitute a part of a 

larger cyclic variation, as well as it could serve for a more robust analysis as regards the decadal 

changes of both wind speed and direction. Moreover, the results of this section clearly suggest 

that in any attempt for wind and wave climate analysis, directional characteristics should 

necessarily be taken into consideration. 

 

 

4.3 Calibration of metocean characteristics  
 

4.3.1 Synopsis 
 

Buoy measurements are usually considered as a reference source in applications related to 

metocean climate analysis and site selection for ocean energy development including evaluation 

and calibration of metocean data obtained from less reliable sources, combined assessment, 

blending and homogenization of multisource metocean data, etc. Regarding linear variables, 

most of these applications are based on regression techniques elaborated by using the principle 

of ordinary least squares (OLS). However, long-term metocean data usually contain several 

outliers, which may question the validity of the regression analysis, if not properly considered. 

In this section, robust regression methods are implemented to identify and reveal outliers from 

wind data, and retain at the same time their efficiency. Long-term reference wind data series 

obtained from buoys at four locations in the Mediterranean Sea are used to calibrate hindcast 

(model) wind data by applying robust methods and OLS. The obtained results are compared 

according to several statistical measures. The effects of the calibration methods are also 

assessed with respect to the available wind power potential. The results clearly suggest that 

particular robust methods perform in all respects better than OLS. 

 

On the other hand, calibration techniques are very rarely adopted for circular variables, although 

their accurate prediction seem to be significant in various applications. For instance, wind 

direction is a critical variable as regards the micro-siting procedure of offshore wind turbines 

within an offshore wind farm, since wake effects can affect the efficiency of the optimal 

aligning of turbines to wind direction (Castellani et al., 2015). Moreover, wave direction is also 

critical as regards the wave resource evaluation in an area when a wave energy converter is to 

be installed (Hiles et al., 2016). In this respect, wind (wave) direction not only should never be 

neglected in relevant applications but it should be determined as accurately as possible. In 

reality, the relevant scientific literature as regards calibration of wind and wave direction from 

various data sources implemented through linear regression analysis is rather poor. In this 

context, calibration techniques are presented for correcting wind direction at various locations 

in the Mediterranean Sea. The application data are measurements from in situ devices and 

results from NWP models and remote sensing instruments, which are corrected since they are 

considered to be less accurate. The obtained results suggest that the proposed statistical 

procedure should be applied along with the calibration of wind speed, whenever accurate data 

are required in wind energy assessments. 

 

The results of the calibration of linear variables based on robust regression methods, along with 

outcomes from additional buoy locations, have been published in:  

Soukissian, T.H., Karathanasi, F.E., 2016. On the use of robust regression methods in wind 

speed assessment. Renewable Energy 99: 1287–1298.  

 

A similar study can also be found in: 

Soukissian, T., Karathanasi, F. Voukouvalas, E., 2014. Effect of outliers in wind speed 

assessment. Proceedings of the 24th International Offshore (Ocean) and Polar Engineering 

Conference, 1: 362-369, Busan, June 15–20.  
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Part of the results of the calibration of directional variables, have been published in: 

Karathanasi, F.E., Soukissian, T.H., Axaopoulos, P.G., 2016. Calibration of wind directions 

in the Mediterranean Sea. Proceedings of the 26th International Ocean and Polar Engineering 

Conference, 1: 491-497, Rhodes, Greece, June 26–July 1. 

 

 

4.3.2 Calibration of linear data using robust regression methods 
 

The main aim of the proposed methodology is to calibrate concurrent wind speed data from the 

less accurate source (NWP model results) using buoy data (which is the reference data source), 

through the implementation of a linear calibration procedure. Furthermore, the performance of 

the examined regression (calibration) methods is also assessed. Along with the OLS method, 

the robust methods that have been applied and examined in this analysis are the MM – 

estimation (MM), Huber’s M–estimation (M–H), least trimmed squares (LTS) and L1 – estimate 

(L1).  

 

Henceforth, let 𝑢𝑀 denote the wind speeds obtained from the NWP model and 𝑢𝐵 denote the 

wind speeds obtained from buoy measurements. �̂�𝑀 denotes the corrected (calibrated) wind 

speed from the NWP model. Although the regression parameters are firstly estimated by the 

abovementioned methods, hereinafter, calibration parameters and procedures are only 

addressed, implying that the corresponding regression parameters have been firstly estimated. 

Based on the classical calibration model, let 𝑏′̂0 and 𝑏′̂1 denote the estimates of intercept and 

slope, respectively, of the calibration parameters. 

 

Two different data sets are elaborated throughout the analysis: the first data set (called 

estimation set) is the one from which the calibration parameters are estimated, and the second 

data set (called evaluation set), is the one on which the calibration is applied and the evaluation 

of the methods is performed. See also Figure 4-10, for a schematic representation of the applied 

methodology. Specifically, the estimation dataset consists in collocated data from buoy 

measurements (black solid line) and NWP model results (black dashed line). From this data set, 

the parameters 𝑏′̂0 and 𝑏′̂1 for the calibration of the NWP model results are estimated. These 

parameters are used for acquiring the calibrated NWP model results (red solid line) of the 

evaluation data set and then the calibrated NWP model data are compared with the buoy data 

of the evaluation set.  

 

The following special cases are examined in detail: 

 

C.1 Full data sample analysis: This is the most fundamental case, where the estimation and the 

evaluation data sets are the same and refer to the entire available time period. Specifically, 

OLS and robust methods are applied using the full concurrent available wind data sets in 

order to calibrate (correct) wind speed data from the less accurate source. The evaluation 

of the performance of OLS and robust methods is made using the same data set. 

C.2 Partial data sample analysis: The estimation and the evaluation data sets are different and 

non-overlapping, i.e. the estimation of the calibration parameters is made using part of the 

available data sample and the calibration and evaluation of the methods is made based on 

the remaining part of the available data sample. Specifically, the estimation data set refers 

to wind data corresponding to the first year of the available time period and the evaluation 

data set refers to data corresponding to the remaining time period. It is evident that the 

unused wind data sample is considered to contain new (“fresh”) wind data, rendering this 

sample more realistic and the methodology tighter for the assessment of the calibration 

relations. This concept is closely related to the measure–correlate–predict (MCP) family 

of methods used in wind speed forecasting to extrapolate and extend in time short-term 
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wind time series; see, for example, Lackner et al. (2008) and a review from Carta et al. 

(2013). 

 

Figure 4-10. Schematic representation of the applied methodology corresponding to case C.2. 

Two additional cases have also been examined in the work of Soukissian et al. (2014). In the 

first one, the calibration parameters were estimated from a time period in the middle of the 

recording period of the obtained datasets in order to correct and evaluate the less accurate data 

source from the time periods before and after the estimation set. In the second one, outliers were 

omitted from the full data sample based on the severity of change they cause on the regression 

parameters �̂�0 and �̂�1 in order to obtain a ‘clean’ dataset for OLS estimation; then, the OLS 

calibration parameters were re-estimated for the entire available time period, the data of the 

same period were re-corrected and the method was re-evaluated. 

 

Overall, the general proposed methodology consists of the following steps: 

 

S.1 Estimation of the calibration parameters 𝑏′̂0 and 𝑏′̂1 by using OLS and robust techniques 

from the collocated data samples referring to the estimation sets of C.1 and C.2 (the 

general recommendation is to use concurrent data of, at least, one year length due to 

seasonal wind variations).  

S.2 Based on the parameters obtained from step S.1, correction of the wind speeds of the less 

accurate data source (NWP model data) referring to the evaluation sets of C.1 and C.2.  

S.3 Comparison between the calibrated NWP model wind speeds (from step S.2) and the 

measured wind speeds obtained from buoys for the evaluation sets of C.1 and C.2. 

 

In order to evaluate the performance of the examined regression/calibration methods, the 

calibrated NWP model wind speeds from robust methods and OLS are compared to the 

corresponding measured wind speeds obtained from the buoys through the following statistical 

measures: BIAS, RMSE, MAE and SI; for the definitions, see Appendix B.4. 
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Data and numerical results 

 

Wind measurements from two buoys deployed in the Aegean Sea and two buoys in the Spanish 

waters are used as reference data source. Their geographic coordinates along with the examined 

measurement periods are presented in Table 4-1. 

 

Before the regression/calibration analysis, the buoy wind data were first checked qualitatively 

and any missing or clearly erroneous values (such as spikes) were discarded. Then, for 

comparison purposes, wind speeds were adjusted to the reference level of 10 m above sea level 

using the log-law wind profile. After this adjustment, the collocation in space and time 

procedure was carried out. For the spatial collocation, the four nearest wind data series of the 

NWP model were downscaled to the exact location of each buoy by applying the weighting 

interpolation scheme. Regarding the temporal collocation, the common time frame was 3 h 

(00:00, 03:00, 06:00, etc. UTC).  

 

In Table 4-2, the results of a primary statistical analysis regarding the concurrent wind datasets 

(buoy measurements and NWP model results) are presented for the examined locations. The 

statistical parameters depicted in this table are the following: sample size N, mean value 𝑚, 

standard deviation 𝑠, minimum value min, maximum value max, coefficient of variation CV 

and coefficient of determination 𝑟2 between buoy measurements and NWP model results. It 

should be noted that, despite the collocation procedure, the sample size remains adequate for 

performing a statistically reliable analysis. 

 

 

Estimation of regression/calibration parameters 

 

The regression lines obtained from all examined methods (OLS method, MM-estimation, 

Huber's M-estimation, LTS and L1-estimation) for the entire samples (i.e. case C.1) along with 

the corresponding density scatter plot are shown in Figure 4-11. The colour gradation indicates 

the density (percentage) of the data points falling within each square, where the red and blue 

tone denotes the maximum and minimum frequency of appearance, respectively. In general, the 

OLS line appears to be relatively further off the diagonal compared to the lines obtained from 

robust methods. In addition, the slope of the regression line �̂�1 is systematically lower for OLS 

compared to robust methods in all examined cases indicating the lower variance of the predicted 

values of model data. It is also easily observed that robust methods provided values of slope 

and intercept mutually close, compared to the values provided by OLS. 

 

Table 4-1. Names, geographical coordinates and concurrent measurement time periods for 

the examined buoys. 

Buoy name Location (lat, lon) Recording period 

Lesvos 39°10´N, 25°49´E 1/2000−12/2004 

Mykonos 37°31´N, 25°28´E 1/2000−12/2004 

Cabo Begur 41°55´N, 3°39´E 3/2001−12/2004 

Cabo de Gata 36°43´N, −2°19´E 1/2000−10/2004 
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Table 4-2. Basic statistics of wind speed for all the examined sites in the Mediterranean 

Sea for the concurrent recording periods. 

Location Data 

source 

𝐍 𝒎 

(m/s) 

𝒔 

(m/s) 

𝐦𝐢𝐧 

(m/s) 

𝐦𝐚𝐱 

(m/s) 

𝐂𝐕 

(%) 
𝒓𝟐 

Lesvos Buoy 
11453 

7.14 4.07 0.12 34.42 57.07 
0.59 

Model 5.75 3.05 0.10 22.92 53.11 

Mykonos Buoy 
8606 

8.14 4.18 0.12 21.48 51.33 
0.71 

Model 6.62 3.21 0.16 17.97 48.46 

Cabo 

Begur 

Buoy 
2257 

8.22 5.85 0.23 27.72 71.17 
0.74 

Model 6.70 3.97 0.18 22.50 59.20 

Cabo de 

Gata 

Buoy 
8870 

6.20 3.83 0.23 20.99 61.76 
0.70 

Model 5.40 3.38 0.10 18.38 62.50 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-11. Scatter plot (with colour-scale indicating density) and regression lines of wind 

speeds obtained for case C.1 for all the applied methods at: (a) Lesvos, (b) Mykonos, (c) 

Cabo Begur and (d) Cabo de Gata. 

The corresponding calibration parameters 𝑏′̂0 and 𝑏′̂1 for the NWP model wind data are 

estimated. The values of these estimated parameters, for each method and both cases, are 

presented in Table 4-3. From this table the following conclusions can be drawn: 
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i. Parameter 𝑏′̂0 is always negative and parameter 𝑏′̂1 is always positive for all methods, 

locations and cases examined. This behaviour is due to the fact that the NWP model tends 

to underestimate wind speed measured from buoys, as was mentioned in Section 0; 

ii. the estimated parameters from the pairs of MM and M–H methods, and LTS and L1 

methods are fairly close to each other in the majority of the locations and cases examined; 

iii. the values of parameters 𝑏′̂0 and 𝑏′̂1 of the OLS method are consistently lower and 

higher, respectively, compared to the corresponding parameters of the robust methods. 

Exception of this behaviour is 𝑏′̂0 in Cabo Begur for case C.1; 

iv. in general, LTS and L1 methods provide the smallest values 𝑏′̂1 parameter for the 

majority of the examined locations. 

 

 

Evaluation of calibration methods 

 

The evaluation of the performance of the examined calibration methods is made by estimating 

the statistical measures mentioned before. In case C.1, the estimation of the calibration 

parameters is made by utilizing the entire concurrent data samples of buoy measurements and 

NWP model results. In Table 4-4, the obtained values of the applied statistics are presented at 

the examined locations for OLS and those of the examined regression/calibration methods that 

provided at least one minimum value of any of the statistics used. The optimum value of the 

statistics for each examined case is shown in boldface letters. The most important conclusions 

that can be drawn from the obtained results are the following:  

 

 MAE and RMSE (along with SI), which are statistic measures quantifying the absolute 

and squared difference between corrected and measured wind speeds, respectively, were 

systematically lower for LTS and L1 methods for all examined locations. 

 From the overall combination of four locations with four statistical criteria (i.e. in total 

16 outcomes), LTS performed better for 12 out of the 16 outcomes and L1-estimator for 

5 outcomes (in SI results of Gabo de Gata both methods performed equally best). 

 

Table 4-3. Estimated calibration parameters obtained from each applied method for cases 

C.1 and C.2 for all examined locations. 

Location Method 𝒃′̂𝟎 𝒃′̂𝟏 

C.1 C.2 C.1 C.2 

Lesvos OLS −2.865 −2.087 1.740 1.657 

MM −2.059 −1.771 1.622 1.604 

M–H −2.241 −1.804 1.649 1.610 

LTS −1.806 −1.634 1.587 1.581 

L1 −1.849 −1.551 1.589 1.559 

Mykonos OLS −2.113 −2.753 1.548 1.666 

MM −1.867 −2.497 1.511 1.627 

M–H −1.900 −2.539 1.517 1.635 

LTS −1.750 −2.349 1.494 1.608 

L1 −1.888 −2.473 1.516 1.631 

Cabo Begur OLS −3.285 −3.338 1.715 1.776 

MM −3.273 −3.217 1.703 1.731 

M–H −3.279 −3.262 1.705 1.743 

LTS −3.300 −3.177 1.697 1.712 

L1 −3.231 −3.289 1.701 1.743 

Cabo de Gata OLS −1.104 −0.971 1.353 1.307 

MM −0.837 −0.738 1.304 1.265 

M–H −0.883 −0.774 1.313 1.272 

LTS −0.700 −0.646 1.280 1.248 

L1 −0.676 −0.579 1.278 1.242 
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Table 4-4. Statistics of calibration equations based on OLS, MM, M-H, LTS and L1 for all 

the examined locations for case C.1. 

Location Method BIAS RMSE MAE SI 

Lesvos OLS 0.347 3.317 2.501 0.441 

LTS 0.338 3.107 2.323 0.424 

L1 0.315 3.108 2.325 0.423 

Mykonos OLS 0.078 2.664 2.064 0.322 

LTS 0.062 2.583 2.000 0.313 

Cabo Begur OLS 0.292 3.389 2.576 0.394 

LTS 0.150 3.350 2.545 0.389 

Cabo de Gata OLS 0.135 2.455 1.872 0.383 

LTS 0.071 2.347 1.783 0.373 

L1 0.082 2.345 1.781 0.373 

 

In case C.2, the estimation of the calibration parameters was made by utilizing only the first 

year data from the concurrent data samples of buoy measurements and NWP model results. 

After applying the calibration, the evaluation of the obtained results was made on the remaining 

time period data. In Table 4-5, the obtained values of the applied statistics are presented at the 

examined locations for OLS and those of the examined regression/calibration methods that 

provided at least one minimum value of any of the statistics used. Again, the optimum value of 

the statistics for each examined case is shown in boldface letters. The most important 

conclusions that can be drawn from the obtained results are the following: 

 

 The best values for RMSE, MAE and SI are obtained from LTS and L1-estimator robust 

methods for all the examined locations. 

 Each of LTS and L1-estimator methods performed better 9 and 6 times, respectively, 

while 1 time LTS and MM-estimator performed equally best. In total, together LTS and 

L1-estimator performed better in 15 out of 16 total outcomes. Furthermore, OLS 

performed well only 1 time. 

 

 

Evaluation of calibration methods on wind energy estimation 

 

In this section, the effects that the different regression (calibration) methods have on the 

estimation of the mean wind power density �̅� are assessed at the examined locations in the 

Greek and Spanish waters. The mean (long-term) wind power density �̅� in a specific sea area 

can be directly obtained, if a sufficiently long time series of observed wind speeds is available, 

through the following relation: 

 

Table 4-5. Statistics of calibration equations based on OLS, MM, M-H, LTS and L1 for all 

the examined locations for case C.2. 

Location Method BIAS RMSE MAE SI 

Lesvos OLS 0.587 3.305 2.451 0.449 

L1 0.475 3.146 2.320 0.433 

Mykonos OLS 0.347 2.865 2.226 0.350 

LTS 0.325 2.758 2.141 0.339 

Cabo Begur OLS 0.812 3.542 2.715 0.441 

LTS 0.529 3.363 2.577 0.419 

Cabo de Gata OLS −0.061 2.358 1.786 0.379 

LTS −0.099 2.283 1.726 0.372 

L1 −0.083 2.279 1.723 0.373 
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 �̅� =
1

2N
∑𝜌𝑢𝑖

3

N

𝑖=1

, (4.6) 

 

where N is the sample size and 𝑢𝑖, 𝑖 = 1,… , N, is the observed wind speed time series. �̅� can 

be directly estimated by utilizing the wind speed time series 𝑢𝐵𝑖, 𝑖 = 1,… , N, obtained from 

buoys. This estimate is denoted by �̅�𝐵 and is considered as the reference value. Moreover, �̅� 

can be also estimated by using the calibrated results of the NWP model, i.e. the wind speed 

time series �̂�𝑀𝑖
, 𝑖 = 1,… , N; this estimate is denoted by �̅̂�𝑀. The quality of the calibration 

procedure described in the foregoing sections can be additionally cross-examined by evaluating 

the (absolute) relative error between �̅�𝐵 and �̅̂�𝑀. 

 

The obtained results for relative errors with respect to all locations and regression/ calibration 

methods examined are shown in Table 4-6. The minimum values of this quantity for each 

examined case and method is shown in boldface letters. It is clear from these results that LTS 

and L1-estimation methods perform systematically better than OLS. It is also worth mentioning 

that OLS method provides the largest relative error for all cases and locations. Let it be noted 

that, for case C.1, the relative error obtained for the non-calibrated data is significantly reduced 

by all calibration methods (results are not shown here). However, even after the application of 

the calibration procedures, the relative error remains still relatively large. Moreover, the relative 

error obtained for case C.2 is large and may be considered as unacceptable; this suggests that 

one-year data may be inappropriate for forecasting purposes as regards the available offshore 

wind power potential. All these issues reveal the need for an in-depth assessment of the less 

reliable data sources in wind energy related applications. The same conclusion was obtained 

(in a different context) in Soukissian and Papadopoulos (2015a). See also the interesting 

discussion of Section 2.3 in Carta et al. (2013). 

 

Table 4-6. Relative errors (%) of mean wind power density based on OLS, MM, M-H, LTS 

and L1 for all the examined locations for cases C.1 and C.2. 

Location Method Case C.1 Case C.2 

Lesvos OLS 38.37 40.74 

L1 26.71 29.25 

Mykonos OLS 21.87 45.39 

LTS 17.50 39.98 

Cabo Begur OLS 28.54 57.84 

LTS 23.45 42.41 

Cabo de Gata OLS 25.84 13.21 

LTS 16.91 6.66 

 

 

4.3.3 Calibration of directional data 
 

Data and methodology used 

 

Two Greek (Lesvos, Santorini) and two Spanish (Cabo Begur, Mahon) buoys are the reference 

data sources and the gridded data from the ERA-Interim (ERAI) and the Blended Sea Winds 

(BSW) datasets form the less accurate data sources (obtained from a NWP model and blending 

data from different satellites, respectively), that are calibrated. The closest grid point (belonging 

either to the model or the satellite product) to the coordinates of the examined buoy was chosen 

for the regression (and calibration) analysis. The data were firstly collocated in time with 6-

hour common time frame (00:00, 06:00, 12:00, 18:00 UTC) for both combinations, i.e., buoy 

measurements and ERAI data, and buoy measurements and BSW data. The concurrent time 

series as regards the examined pairs buoy-ERAI and buoy-BSW are extending from 2004 to 
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2006 for the former pair, and from 2007 to 2009 for the latter one, since they provided the 

longest collocated triennial time span. The corresponding sample size along with the 

geographical coordinates for each buoy are presented in Table 4-7. Moreover, it was assumed 

that the change of wind direction due to the different reference heights is negligible. 

 

Before proceeding with the application of the circular calibration on the available wind data, a 

basic statistical analysis for the three aforementioned data sources is provided. Wind directions 

are measured in degrees in the range (0°, 360°] while the statistical and regression and 

calibration analysis is based on angles that are transformed in radians in the interval (−𝜋, 𝜋]. 
Units are displayed, whenever necessary, if the values of the examined statistics are not in 

radians.  

 

In Table 4-7, the main statistical parameters are summarized for each circular variable in the 

examined locations. It is noticed that the mean directions obtained from the concurrent wind 

data between buoy measurements and ERAI data are closer compared to the other pair of 

concurrent data (buoy and BSW) apart from Cabo Begur, where the corresponding difference 

is however rather low (~0.5°). The highest sample sizes are encountered in Santorini for both 

examined pairs of datasets. Moreover, the lowest values for 𝑉𝛩 and 𝑠𝛩 are found in Santorini 

and the highest values are depicted in Mahon. See also Figure 4-12 and Figure 4-13.  

 

The prevailing wind directions obtained from the gridded wind data sources coincide in Lesvos 

and Santorini (NNE and N, respectively); see Figure 4-12. Furthermore, wind directions 

originating from the sector [45°, 225°] are rather rare in the same locations. Regarding the 

Spanish locations in Figure 4-13, wind direction from all the examined data sources is much 

dispersed in Mahon; in Cabo Begur, the pattern of rose diagrams from the two examined pairs 

of concurrent wind directional data is relatively similar to each other compared to the other 

locations and the wind is almost unidirectional with prevailing direction coming from the NNW 

for the three wind data sources. 

 

Table 4-7. Summary descriptive statistics from the concurrent wind directions (Buoy-ERAI, 

Buoy-BSW) for the Greek (Lesvos-LSV, Santorini-SNR) and Spanish (Cabo Begur-BGR, 

Mahon-MHN) locations. 

Location  Data 

source 

𝒏 �̅� 

(°) 

�̅� 

(–) 

𝑽𝜣 

(–) 

𝒔𝜣 

(–) 

LSV 

φ: 39.15° 

λ: 25.81° 

Buoy 
3332 

20.918 0.395 0.605 1.363 

ERAI 25.614 0.380 0.620 1.391 

Buoy 
2972 

21.365 0.390 0.610 1.372 

BSW 13.529 0.359 0.641 1.431 

SNR 

φ: 36.25° 

λ: 25.49° 

Buoy 
4038 

314.760 0.484 0.516 1.205 

ERAI 321.009 0.520 0.480 1.144 

Buoy 
4028 

314.855 0.484 0.516 1.205 

BSW 322.938 0.478 0.522 1.215 

BGR 

φ: 41.92° 

λ: 3.65° 

Buoy 
3546 

342.879 0.265 0.735 1.629 

ERAI 333.366 0.308 0.692 1.535 

Buoy 
3494 

343.140 0.263 0.737 1.635 

BSW 334.076 0.245 0.755 1.678 

MHN 

φ: 39.72° 

λ: 4.44° 

Buoy 
3744 

351.556 0.115 0.885 2.081 

ERAI 338.226 0.234 0.766 1.705 

Buoy 
3694 

353.139 0.113 0.887 2.089 

BSW 331.439 0.173 0.827 1.874 
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(a) 

  

(b) 

Figure 4-12. Rose diagrams of the two pairs of wind direction for(a) Lesvos and (b) 

Santorini. 

 

  

(a) 
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(b) 

Figure 4-13. Rose diagrams of the two pairs of wind direction for (a) Cabo Begur and (b) 

Mahon. 

After evaluating the performance of the examined regression/calibration methods presented in 

Section 2.6.2 with the statistical measures presented in Appendix B.4, the calibrated/corrected 

values of 𝜃, denoted by 𝜃, are used from the three applied calibration methods, i.e. classical 

circular calibration (AC1), inverse circular calibration (AC2), and circular calibration based on 

orthogonal distance (AC3). 

 

In Table 4-8 and Table 4-9, the results obtained after the calculation of the abovementioned 

statistics for the different calibration techniques applied at each location are presented. The bold 

faced numbers denote the best value for each statistical criteria at the examined locations. The 

most striking result is that the inverse circular regression performs almost systematically better 

compared to the other two calibration methods. Specifically, the following results can be drawn: 

 

1. As regards Table 4-8, from the overall combination of four locations and five statistical 

measures (i.e. 20 outcomes in total), AC2 performs better in 12 out of 20 outcomes, while 

AC1 and AC3 perform better 4 times each.  

2. As regards Table 4-9, AC2 performs better in 11, AC1 in 5 and AC3 in 4 outcomes out of 

the total 20.  

3. The values for MCAE and RME are systematically better for AC2, irrespectively of the 

gridded wind data source. 

4. Overall, the lower values for BIAS, MCAE, RME and MRB are depicted after applying 

the calibration models for the ERAI results, apart from BIAS in Santorini and Mahon, and 

MRB in Lesvos.  

5. All statistical criteria are fairly improved after applying the proposed circular calibration 

methods (apart from MRB in Lesvos), even if the data are not highly correlated/associated. 

This clearly suggests that circular calibration should be applied when an increased 

accuracy of wind direction is required. 
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Table 4-8. Statistical measures for the examined locations between buoy data and ERAI 

results before calibration (BC) and after calibration based on classical circular 

calibration (AC1), inverse circular calibration (AC2), and circular calibration based on 

orthogonal distance (AC3). 

Location Case 𝒓𝒄𝒄 BIAS MCAE RME MRB 

LSV BC 0.4135 0.0820 0.6758 0.3090 −0.0454 

AC1 0.5230 −0.0097 0.6357 0.2974 0.0163 

AC2 0.5336 −0.0360 0.5842 0.2848 0.0141 

AC3 0.5259 −0.0450 0.5986 0.2880 0.0168 

SNR BC 0.7204 0.1091 0.4944 0.2279 −0.0776 

AC1 0.7589 0.0655 0.4611 0.2171 −0.0063 

AC2 0.7438 −0.0501 0.4316 0.2078 0.0101 

AC3 0.7521 -0.0258 0.4368 0.2100 0.0017 

BGR BC 0.6450 −0.1660 0.5259 0.2663 −0.0058 

AC1 0.6437 −0.0544 0.5346 0.2682 −0.0068 

AC2 0.6478 −0.0558 0.5219 0.2653 −0.0015 

AC3 0.6447 −0.0346 0.5257 0.2661 −0.0059 

MHN BC 0.8052 −0.2326 0.4527 0.2242 −0.0138 

AC1 0.8159 −0.1149 0.4477 0.2218 0.0040 

AC2 0.8169 −0.1653 0.4409 0.2209 0.0062 

AC3 0.8171 −0.1335 0.4431 0.2211 0.0048 

 

Table 4-9. Statistical measures for the examined locations between buoy and BSW data 

before calibration (BC) and after calibration based on classical circular calibration 

(AC1), inverse circular calibration (AC2), and circular calibration based on orthogonal 

distance (AC3). 

Location Case 𝒓𝒄𝒄 BIAS MCAE RME MRB 

LSV BC 0.0252 −0.1368 0.8193 0.3619 0.0003 

AC1 0.4145 0.1134 0.7559 0.3403 0.0120 

AC2 0.3529 −0.0685 0.7098 0.3275 0.0325 

AC3 0.3727 −0.0291 0.7220 0.3301 0.0276 

SNR BC 0.6610 0.1411 0.5999 0.2630 −0.0920 

AC1 0.6850 −0.0144 0.5357 0.2469 −0.0054 

AC2 0.6745 −0.0582 0.4923 0.2330 0.0174 

AC3 0.6835 −0.0512 0.5017 0.2367 0.0050 

BGR BC 0.4736 −0.1582 0.7256 0.3358 −0.0698 

AC1 0.5023 −0.1649 0.7217 0.3301 −0.0269 

AC2 0.5193 −0.1564 0.6953 0.3225 −0.0055 

AC3 0.5134 −0.0802 0.7025 0.3244 −0.0216 

MHN BC 0.6838 −0.3787 0.6107 0.2832 −0.0188 

AC1 0.7162 −0.1071 0.6092 0.2836 −0.0175 

AC2 0.7155 −0.2319 0.6057 0.2825 −0.0116 

AC3 0.7179 −0.1531 0.6065 0.2829 −0.0150 

 

In the left panels of Figure 4-14, the situation before and after applying the calibration methods 

is presented for Lesvos location and both pairs of datasets by means of a scatter plot. This 

particular location was chosen in order to show the behaviour of AC2 method for two opposite 

situations: in the case of the pair “Buoy-ERAI”, AC2 outperforms considerably the other 

methods (see also Table 4-8) while for the other pair of data the performance of AC2 is poorer 

(see also Table 4-9). With the reference line 𝑦 = 𝑥 in mind, it is deduced that all calibration 

methods tend to shift more pairs towards this line with AC2 method reaching better results. A 

clearer conclusion is presented in the right panels of the same figure, where the histogram of 

the absolute circular distance is plotted for all the examined calibration methods; for clarity 
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purposes, only the central value of each bin (of 5° width) is depicted. The obtained results show 

that for smaller values of absolute circular distance, the most counts are provided for AC2 while 

as this value gets bigger (e.g. over 20°) then fewer counts correspond to this method. Finally, 

from these outcomes there is strong evidence that circular calibration should take part in studies 

where the accurate representation of direction is of importance.  

 

Finally, in Figure 4-15 the calibrated wind directions for the best method is presented for each 

pair as regards Lesvos location. Comparing this figure with the corresponding ones before the 

calibration (see Figure 4-12(a)), it is once again verified that the calibrated values of wind 

direction obtained from the less accurate data sources are closer to the buoy measurements, 

even for the sectors with low frequency of occurrence. 

  

(a) 

  

(b) 

Figure 4-14. Calibration plots (left column) and histogram of absolute circular distance 

(right column) for (a) ERAI and (b) BSW data and all examined calibration methods in 

Lesvos. 
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4.3.4 Final comments 
 

Linear data (e.g. wind speed data) from various sources quite often include erroneous 

observations that either can remain unnoticed or hidden in classical regression analysis or can 

be excluded from further assessment on the basis of some diagnostic tools. In either case, the 

results of the analysis may be highly misleading, since the presence of outliers or their false 

rejection can seriously affect the regression procedure (parameter estimation) and, 

consequently, the calibration results. Therefore, before proceeding to any analysis, the 

identification of outliers is an important, but rather delicate, procedure. 

 

 

(a) 

 

(b) 

Figure 4-15. Rose diagrams after the calibration of wind direction with AC2 method of the 

pairs (a) buoy-model and (b) buoy-satellite for Lesvos. 

In Section 4.3.2, robust estimators were described and applied for correcting wind speed 

measurements from less reliable data sources with reference to in situ measurements. Such 

measurements are prone to the presence of outliers and influential observations and as a 

consequence, the obtained results can be fallacious to derive decisions in wind speed 

assessment. Two different types of concurrent wind data sets referring to four offshore locations 

across the Mediterranean Sea were used: wind speed time series obtained from buoys and wind 

speed time series obtained from a high-resolution NWP model results covering various 

recording periods. The primary statistical analysis showed that wind speed is, in the mean, 

underestimated for the results of the examined atmospheric model compared to buoy 

measurements. 

 

The evaluation of each robust method, along with the traditional OLS approach, was made by 

applying the regression and calibration procedure for different time periods (and consequently, 

different data samples). Using the entire available data sample (i.e. case C.1 above), the 

regression (and calibration) coefficients were estimated. In the other examined case (i.e. case 

C.2 above), an alternative methodology was applied for a more realistic and practical 

evaluation, where the regression (and calibration) relations were assessed from ‘unused’ wind 

measurements. Since there is not a unique statistical criterion for evaluating the performance of 

the examined calibration methods, several different statistical criteria were applied. 

 

The obtained results from the evaluation procedures revealed that least trimmed squares (and 

secondarily, L1-estimator) method performed systematically better for each examined case and 

for all locations than the rest methods. OLS method seemed to give rarely better results. 

Furthermore, the validity and performance of the regression/calibration methods was tested in 

the estimation of the mean wind power density. This assessment confirmed the results already 
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obtained from the evaluation of wind speed. Specifically, it was found that least trimmed 

squares and L1-estimator methods performed systematically better than OLS, while the latter 

provided always the greatest relative estimation error.  

 

Overall, robust statistics can provide a means for dealing efficiently with outliers in wind data 

samples in a theoretically justified way, while their implementation to wind energy assessment 

proved to give better results than classical OLS method. Least trimmed squares and L1-

estimator methods are characterized by their appealing definition and computability and can 

provide reasonable results, even if the outliers in the examined sample are numerous. 

Furthermore, another straightforward and efficient approach is to detect unusual wind speed 

data, with an emphasis on bad leverage points that have large residuals, through least trimmed 

squares analysis and then perform OLS regression without (all or a part of) these observations. 

Therefore, it is suggested that the use of robust methods should be seriously considered in wind 

energy related applications, since their effectiveness with samples containing outliers is 

indubitable. 

 

In Section 4.3.3, three different circular regression/calibration models are proposed in order to 

correct wind data from less reliable wind data sources by using, as a reference source, 

measurements from oceanographic buoys. The examined data samples consist of two pairs of 

concurrent wind directions: 1) buoy measurements and results from the ERA-Interim data base, 

and; 2) buoy measurements and outputs from the Blended Sea Winds data base. Four locations, 

located in the Mediterranean Sea, are examined for each group with data covering a 3-year 

period. 

 

The regression models were based on a tangent mapping while the parameter estimation was 

based on the minimization of circular distances. Moreover, it was assumed that the independent 

variable (i.e. wind direction from buoys) was error-free in contrast with the dependent one (i.e., 

wind direction from the gridded data sets). The evaluation of the proposed calibration models 

was based on five statistical criteria. The obtained results suggest that the inverse calibration, 

generally, performs better than the classical calibration and the calibration based on the 

orthogonal distance as regards the adopted statistical measures. In this respect, circular 

calibration should complement linear calibration, in cases where the accuracy is important such 

as wind energy assessment. Further work on the calibration of wind direction includes models 

that take into consideration errors in both variables or models that detect possible outliers. 

 

 

4.4 Probabilistic modelling of metocean data  
 

4.4.1 Synopsis 
 

In this section, three families of models for the joint probabilistic description of wind speed and 

wind direction are examined and thoroughly evaluated, namely Johnson-Wehrly (JW) and two 

families of copulas (Farlie-Gumbel-Morgenstern (FGM) and Plackett (PLA)). These models 

are applied on long-term wind data obtained by two oceanographic buoys at different locations 

of the Mediterranean Sea, one in the Greek and the other one in the Spanish waters. The 

proposed bivariate models are theoretically sound and tractable, since they are defined by 

closed relations and are constructed by considering the marginal (univariate) distributions of 

wind speed and wind direction along with an appropriate dependence structure of the involved 

variables. In the univariate case, wind speed modelling is based on a wide range of conventional 

and mixture distributions, while wind direction is modelled through finite mixtures of von 

Mises distributions. The evaluation of the bivariate models is based on seven bin-specific 

goodness-of-fit criteria. The obtained results suggest that the performance of the JW model is 

rather superior, since it provides better fits compared to the other two families of bivariate 

distributions for the overwhelming majority of the examined cases and criteria. The most 
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efficient bivariate model is then implemented to estimate the detailed structure of wind power 

density at one selected location. 

 

Part of the results presented in the following analysis have been published in:  

Soukissian, T.H., Karathanasi, F.E., 2017. On the selection of bivariate parametric models 

for wind data. Applied Energy 188: 280–304.  

 

 

4.4.2 Univariate and bivariate models for linear and directional variables 
 

Univariate distributions for wind speed 

 

Various univariate probability distributions can be used for fitting wind speed data; see Section 

1.2.1. and references therein. In this analysis, the conventional parametric distributions, 

presented in Table 4-10, were initially evaluated using the Kolmogorov-Smirnov (K-S) and 

Anderson-Darling (A-D) goodness-of-fit tests. 

 

After the pre-evaluation of these distributions (see Section 4.4.3 for more details), the most 

efficient distributions (i.e. those with an optimal performance regarding modelling of wind 

speed data in the examined locations) were identified and examined analytically, namely: Beta 

(BET), Burr (BUR), Dagum (DAG), Fatigue Life (FAL), Gamma (GAM), Generalized 

Extreme Value (GEV), Genelalized Gamma (GNG), Generalized Logistic (GNL), Generalized 

Pareto (GPA), Johnson SB (JSB), Kappa (KAP), Log-Logistic (LGL), Lognormal (LGN), Log- 

Pearson 3 (LP3), Pearson 6 (PE6), Pert (PER), Rayleigh (RAY), Wakeby (WAK) and Weibull 

(WEI) distributions. The definitions of the most usual probability distributions in wind energy 

assessment are presented in Section 1.2.1. Some of the distributions in the above table consider 

one or more location parameters. The consideration of such distributions is advocated by the 

fact that if these distributions provide a better fit than the location-free ones, then the former 

should be examined in the evaluation of the corresponding bivariate models. 

 

For the better representation of wind regimes with particularities, apart from the conventional 

parameters, three parametric homogeneous and heterogeneous mixture distributions are 

additionally considered for wind speed modelling. Specifically, the homogeneous 2-parameter 

Weibull mixture (WW), the normal (truncated from below) mixture (NN), and the 

heterogeneous 2-parameter Weibull-Generalized Extreme Value mixture (WGEV) are 

examined (all with two components); for the corresponding definitions see also Section 1.2.1. 

 

Table 4-10. Conventional parametric distributions for modelling wind speed. 

Number of 

parameters 

Conventional distributions 

1 Rayleigh 

2 Chi-Squared, Exponential, Gaussian, Levy, Log-Gamma, Nakagami, Pareto, 

Rayleigh, Reciprocal, Rice, Uniform  

3 Erlang, Fatigue Life, Fréchet, Gamma, Generalized Extreme Value, 

Generalized Logistic, Generalized Pareto, Inverse Gaussian, Log-Logistic, 

Lognormal, Log-Pearson 3, Pearson 5, Pert, Power function, Weibull 

4 Beta, Burr, Dagum, Generalized Gamma, Johnson SB, Kappa, Kumaraswamy, 

Pearson 6 

5 Wakeby 
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Univariate distributions for wind speed 

 

As regards the directional variable (i.e. wind direction), a finite mixture of von Mises (vM) 

distributions is implemented; see Section 1.2.2 for the definition. In respect with the problem 

of selecting the number of components for describing this finite mixture model in an easy and 

fast way, it is still an open issue. In this study, the Bayesian information criterion (BIC), 

proposed by Schwarz (1978), was applied in order to select the optimal number of components 

for each finite mixture model. BIC is defined by 

 

 BIC = −2 log𝐿 + 𝑏 ln𝑁, (4.7) 

 

where 𝐿 is the maximized value of the likelihood function for the mixture model, and 𝑏 is the 

number of parameters in the mixture model. At the right-hand side of Eq. (4.7), the first term is 

a measure of lack of fit and the second one measures the degree of complexity of the model. 

Moreover, the algorithm proposed by Garcia-Portugues (2013) was applied for selecting the 

range of the number of components; the number of components that minimized the BIC 

function was selected as the most optimal value for the estimation of the parameters. 

 

In regard of the bivariate case of modelling wind speed and wind direction, the Johnson-Wehrly 

(JW), the Farlie-Gumbel-Morgenstern (FGM) and the Plackett families of distributions are 

assessed; for a brief theoretical background on these distributions see Section 1.3.1.  

 

 

4.4.3 Goodness-of-fit testing 
 

Regarding wind speed, a preliminary selection of the most efficient distributions, out of the 36 

conventional distributions that were initially examined (see Table 4-10), was based on the 

Kolmogorov–Smirnov (K-S) and Anderson–Darling (A-D) goodness-of-fit tests. K-S test is 

non-parametric and is based on the absolute deviations (largest vertical distances) between the 

empirical distribution function (i.e. sample cdf) and the specified hypothetical continuous cdf. 

The main disadvantage of this test is its sensitivity near the centre of the distribution and that 

the distribution must be specified. A modification of K-S test is A-D test that is used to verify 

if the sample data comes from a population with a specific distribution. The critical values of 

A-D test are dependent on the specified distribution that is being tested in contrast to K-S test, 

allowing in this way a more sensitive test. A-D test gives more weight to deviations at the tails 

of distributions than K-S test. The two tests are not equivalent and may generate inconsistent 

indications of fit performance among the candidate pdfs; see, e.g. Chang (2011), and Soukissian 

(2013). Therefore, the ten best-fit distributions, characterized by the smallest test statistics, 

according to K-S test and the corresponding ones according to A-D tests were identified for the 

examined locations. Nevertheless, the final number of the analytically examined distributions 

for each location was less than 20 due to several overlaps between the best-fit distributions 

provided by the two tests; see also Section 4.4.4. 

 

In order to characterize the obtained fits in a uniform way, the final evaluation of the 

distributions was based on the coefficient of determination 𝑅𝑎,1
2  (the lower index ‘1’ denotes 

the univariate case), which quantifies the association between the observed cumulative 

probabilities and the predicted cumulative probabilities of a wind speed distribution. For each 

definition, see Appendix B.5. This coefficient has been adopted in many wind speed modelling 

studies; see, for example, Carta et al. (2009) and references therein, Ouarda et al. (2015). 

 

On the other hand, the evaluation of the bivariate (and multivariate, in general) models is not a 

trivial issue, since the available statistical tools are rather poor (McAssey, 2013). Although the 

literature for multi-normal evaluation is abundant, the corresponding tests cannot be directly 

extended in the general multivariate case, not even for the bivariate one. McAssey (2013) also 
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states that some attempts for establishing goodness-of-fit tests in multiple dimensions are either 

extremely difficult to compute or intractable for most multivariate distributions. In the present 

analysis, the evaluation of the obtained bivariate fits was based on seven bin-specific measures 

of performance, which are presented here due to their rare appearance in the corresponding 

literature.  

 

Let 𝑝𝑖𝑗
(𝑜)

 denote the fraction of points (from the real data set) that belong in the (𝑖, 𝑗) −bin (cell) 

and 𝑝𝑖𝑗
(𝑒)

 the corresponding fraction of points from the estimated bivariate distribution. Let also 

𝑁𝑖𝑗
(𝑜)

 denote the observed number of data points falling in the (𝑖, 𝑗) −cell. A data point (𝑥, 𝜃) 

belongs in the (𝑖, 𝑗) −cell if (𝑥𝑖 < 𝑥 ≤ 𝑥𝑖+1) and (𝜃𝑗 < 𝜃 ≤ 𝜃𝑗+1) where 𝑥𝑖, 𝜃𝑗, 𝑖 = 1,2, … , 𝐼, 

𝑗 = 1,2,… ,𝑚, are the corresponding cell boundaries. 

 

For the estimated (theoretical) bivariate pdf, the probability that an observation falls in this cell 

is evaluated as follows: 

 

 
𝑃𝑟[(𝑥, 𝜃) ∈ 𝑐𝑒𝑙𝑙(𝑖, 𝑗)] = 𝑝𝑖𝑗

(𝑒)
= 𝐹𝑋,𝛩(𝑥𝑖+1, 𝜃𝑗+1) − 𝐹𝑋,𝛩(𝑥𝑖+1, 𝜃𝑗) 

−𝐹𝑋,𝛩(𝑥𝑖, 𝜃𝑗+1) + 𝐹𝑋,𝛩(𝑥𝑖, 𝜃𝑗).  
(4.8) 

 

The root mean square error (RMSE) is defined as 

 

 RMSE = √
SSE
𝑁𝑇
, (4.9) 

 

where SSE = ∑ (𝑝𝑖𝑗
(𝑜)
− 𝑝𝑖𝑗

(𝑒)
)
2

𝑖,𝑗  is the sum of squared error, which measures the total 

difference between the observed and the expected frequency for all bins, and 𝑁𝑇 is the total 

number of bins. 

 

The relative root mean square error (RRMSE) is defined as 

 

 RRMSE = √
SRSE
𝑁𝑇

, (4.10) 

 

where SRSE = ∑ (
𝑝𝑖𝑗
(𝑜)
−𝑝𝑖𝑗

(𝑒)

𝑝𝑖𝑗
(𝑜) )

2

= ∑ (1 − 𝑝𝑖𝑗
(𝑒))

2

𝑖,𝑗𝑖,𝑗  is the sum of relative squared error. 

 

The mean absolute error (MAE) is defined as 

 

 MAE =
1

𝑁𝑇
∑|𝑝𝑖𝑗

(𝑜) − 𝑝𝑖𝑗
(𝑒)
|

𝑖,𝑗

. (4.11) 

 

The index of agreement (IA), suggested by Zhou et al. (2010), is defined as  

 

 IA = 1 −
∑ (𝑝𝑖𝑗

(𝑜) − 𝑝𝑖𝑗
(𝑒))

2

𝑖,𝑗

∑ (|𝑝𝑖𝑗
′(𝑜)
| − |𝑝𝑖𝑗

′(𝑒)
|)
2

𝑖,𝑗

, IA ∈ [0,1], (4.12) 
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where 𝑝𝑖𝑗
′(𝑜)

, 𝑝𝑖𝑗
′(𝑒)

 denotes the difference between the observed and the mean frequency, and the 

difference between the estimated and the mean frequency, respectively. Willmott (1982) 

introduced this statistic while Webb et al. (2009) applied this index to wind erosion analysis. 

 

The 𝜒2 statistic (also called 𝜒2 −error) is defined as 

 

 𝜒2 =∑
(𝑛𝑝𝑖𝑗

(𝑜)
− 𝑛𝑝𝑖𝑗

(𝑒)
)
2

𝑛𝑝𝑖𝑗
(𝑒)

𝑖,𝑗

=∑
(𝑁𝑖𝑗

(𝑜)
− 𝑛𝑝𝑖𝑗

(𝑒)
)
2

𝑛𝑝𝑖𝑗
(𝑒)

𝑖,𝑗

, (4.13) 

 

where 𝑛 denotes the total number of observations. 

 

The adjusted coefficient of determination 𝑅𝑎,2
2  (lower index ‘2’ denotes the bivariate case) 

measures the strength of the linear relationship between the expected and the observed 

frequencies of all bins and is defined as 

 

 𝑅𝑎,2
2 = 1 −

(𝑁 − 1)SSE
(𝑁 − 𝑞 − 1)SST

, (4.14) 

 

where 𝑞 is the number of parameters estimated for the particular distribution, 𝑁 is the total 

number of non-empty bins and SST denotes the total sum of squares, reflecting the total 

difference between the observed frequencies and the average frequency 𝑝
(𝑜)

 for all bins, i.e. 

SST = ∑ (𝑝𝑖𝑗
(𝑜) − 𝑝

(𝑜)
)
2

𝑖,𝑗 . 

 

The bivariate pdfs providing the smallest values of RMSE, MAE, RRMSE and 𝜒2, and the 

highest values of 𝑅𝑎,2
2  and IA are likely to be characterized by a smaller fit error. 

 

Moreover, Mathisen and Bitner-Gregersen (1990) proposed a more sophisticated method for 

the evaluation of the bivariate fits based on the normalized deviation 𝑑𝑖𝑗 between the observed 

number of data points 𝑁𝑖𝑗
(𝑜)

 falling in a cell and the expected number of points 𝑛𝑝𝑖𝑗
(𝑒)

. 𝑑𝑖𝑗 is 

provided by 

 

 𝑑𝑖𝑗 =
𝑁𝑖𝑗
(𝑜) − 𝑛𝑝𝑖𝑗

(𝑒)

𝜎𝑖𝑗
(𝑒)

, (4.15) 

 

where 𝜎𝑖𝑗
(𝑒)

 is the normalizing factor. 𝜎𝑖𝑗
(𝑒)

 is the expected standard deviation for the number of 

data points falling in the cell according to the binomial distribution, since each outcome may 

be considered as ‘success’ (i.e. the data point lies inside the examined cell) or ‘failure’; 

therefore, 𝜎𝑖𝑗
(𝑒) = √𝑛𝑝𝑖𝑗

(𝑒) (1 − 𝑝𝑖𝑗
(𝑒)). Values of 𝑑𝑖𝑗 close to zero indicate a good fit of the 

adopted model. In addition, positive values denote that the fitted model assigns a lower 

probability compared to the actual data in the specific cell; the opposite holds true for negative 

values. 

 

The main conceptual difference between the different fit performance measures used here is 

that 𝑑𝑖𝑗 provides a characterization of the performance of the estimated analytic bivariate pdf 

in the entire domain of (𝑥, 𝜃) while the other measures provide a unique characterization for 

the performance of the model. Thus, 𝑑𝑖𝑗 identifies the particular areas in the (𝑥, 𝜃) −plane 

where the bivariate model either performs well or underperforms. 
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4.4.4 Data and numerical results 
 

Long-term measured wind speed and direction data from one Greek oceanographic buoy of the 

POSEIDON marine monitoring network and one Spanish oceanographic buoys of the Spanish 

Port Authority (Puertos del Estado) are presented in this analysis; their exact location and 

measurement period are shown in Table 4-11. Three more buoys and one onshore 

meteorological mast for wind measurements of the Centre for Renewable Energy Sources and 

Saving (CRES) were additionally included in Soukissian and Karathanasi (2017). Before the 

statistical analysis and the parameter estimation procedure, the wind data were corrected and 

filtered, negative and stacked values were removed, while only concurrent measurements of 

wind speed and wind direction were taken into consideration. 

 

Table 4-11. Station names, geographical locations, recording periods and sample sizes of 

wind data sets. 

Name location Latitude, longitude (°) Measurement period 𝒏 

Crete 35.79°N, 24.92°E 2007–2015 12,665 

Mar de Alboran 36.27°N, 5.03°W 1997–2006 29,100 

 

In Table 4-12 and Table 4-13, the main statistical parameters of wind speed 𝑢 (e.g. standard 

deviation 𝑠𝑢, coefficient of variation 𝐶𝑉𝑢, skewness 𝑆𝑘𝑢, kurtosis 𝐾𝑢𝑢) and wind direction 𝜃 

from the above data sets are presented, respectively. The most intense wind climate corresponds 

to Crete, with mean wind speed 𝑚𝑢 =5.414 m/s and overall maximum value of wind speed 

max𝑢 =18.75 m/s.  

 

Table 4-12. Basic (linear) statistics of wind speed at the examined locations. 

Name location 𝒎𝒖 

(m/s) 
𝐦𝐢𝐧𝒖 

(m/s) 
𝐦𝐚𝐱𝒖 

(m/s) 
𝒔𝒖  

(m/s) 
𝑪𝑽𝒖  

(%) 
𝑺𝒌𝒖 

(–) 
𝑲𝒖𝒖 

(–) 

Crete 5.414 0.195 18.750 2.809 51.874 0.567 0.321 

Mar de Alboran 5.273 0.200 16.900 2.949 55.926 0.368 −0.553 

 

As regards the corresponding results for wind direction, it is noticed that the winds blow, in the 

mean, from the WNW sector for both examined locations. The highest value of mean resultant 

length 𝑅𝜃 is depicted at Crete, suggesting rather concentrated data while highest values of 

circular variance 𝑉𝜃 (and 𝑠𝜃) corresponds to Mar de Alboran denoting that wind direction in 

this location is more uniformly distributed on the circle compared with the Greek location. 

Finally, the highest value, in the absolute sense, of circular skewness 𝑆𝑘𝜃 is encountered at Mar 

de Alboran (−0.493) denoting that the corresponding dataset is rather non-unimodal. 

 

Table 4-13. Basic (circular) statistics of wind direction at the examined locations. 

Name location 𝒎𝜽 

(rad) 
𝑹𝜽 

(–) 

𝑽𝜽 

(–) 

𝒔𝜽 

(–) 

𝑺𝒌𝜽 

(–) 

𝑲𝒖𝜽 

(–) 

Crete 5.285 0.396 0.604 1.099 −0.041 0.269 

Mar de Alboran 5.059 0.097 0.903 1.344 −0.493 0.207 

 

 

Univariate distributions for wind speed 

 

For each examined location the preliminary selection of the distributions that are further 

analysed was made by using K-S and A-D goodness-of-fit tests as mentioned in Section 4.4.3. 

These distributions along with the corresponding K-S and A-D test statistics are summarized in 

Table 4-14. In the same table, the corresponding values for the mixture distributions are also 
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provided (i.e. WW), WGEV and NN). Empty cells denote that the provided test statistic values 

are too large. 

Overall, 19 conventional distributions and three mixture distributions with two components 

were further evaluated by means of 𝑅𝑎,1
2 . The corresponding results, shown in Figure 4-16, are 

plotted appropriately scaled, i.e. using |log(1 − 𝑅𝑎,1
2 )| instead of 𝑅𝑎,1

2 , since the values of the 

latter are often very close to each other, rendering their differences imperceptible in a graph. 

 

The results of the evaluation based on 𝑅𝑎,1
2  suggest the following: as regards the conventional 

distributions, WAK distribution provided the best fit for both locations, KAP distribution 

provided the second best fit again for both locations while GEV and GNG provided the third 

best fit for Crete and Mar de Alboran, respectively. As regards the mixture distributions, NN 

provided a better fit than WGEV and WW for Crete and WW provided a better fit than the other 

two for Mar de Alboran.  

 

Table 4-14. Kolmogorov-Smirnov and Anderson-Darling test statistics. 

Distributions Test Crete 
Mar de 

Alboran 
Distributions Test Crete 

Mar de 

Alboran 

BET K-S 0.032 0.041 LGL K-S 0.027  

A-D 11.026 62.371 A-D 14.965  

BUR K-S 0.03 0.050 LGN K-S 0.026  

A-D 9.807 117.03 A-D 7.058  

DAG K-S 0.030 0.033 LP3 K-S  0.041 

A-D 9.963 35.171 A-D  77.784 

FAL K-S 0.027  NN K-S 0.030 0.030 

A-D 7.279  A-D 2.495 7.852 

GAM K-S 0.029  PE6 K-S 0.026  

A-D 7.930  A-D 7.639  

GEV K-S 0.023 0.049 PER K-S  0.044 

A-D 5.689 118.88 A-D  69.657 

GNG K-S  0.026 RAY K-S  0.051 

A-D  20.151 A-D  129.05 

GNL K-S 0.029  WAK K-S 0.016 0.013 

A-D 17.36  A-D 419.47 1504.9 

GPA K-S  0.030 WEI K-S 0.032 0.056 

A-D  2933.1 A-D 10.906 120.88 

JSB K-S 0.025 0.029 WGEV K-S 0.030 0.024 

A-D 6.318 126.24 A-D 3.340 4.823 

KAP K-S 0.027 0.020 WW K-S  0.021 

A-D 5.676 25.036 A-D  4.149 

 

 

(a) 

 

(b) 

Figure 4-16. Values of coefficient of determination 𝑅𝑎,1
2  for the corresponding probability 

distribution functions for (a) Crete and (b) Mar de Alboran. 
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Summing up, the six best fits for each location that are analytically assessed in the bivariate 

case, are summarized as follows (numbers in parentheses denote the corresponding values of 

𝑅𝑎,1
2 ): 

 

 Crete: NN (0.99961), WAK (0.99960), WGEV (0.9995), KAP (0.99930), GEV 

(0.99928), LGN (0.9991); 

 Mar de Alboran: WW (0.9998), WAK (0.99976), WGEV (0.9997), KAP (0.9992), NN 

(0.99883), GNG (0.99880). 

 

Notice that KAP and WAK distributions appear between the best-fit distributions for the two 

examined locations. In Figure 4-17, the histograms of wind speed along with the six best fit 

pdfs are plotted for the examined locations. 

 

 

Univariate distributions for wind direction  

 

In Table 4-15, the parameters of the mixtures of vM distributions (see Eq. (1.36)) for wind 

direction modelling are summarized, providing also the weighting parameter. Based on the BIC 

criterion, Crete and Mar de Alboran were described with four and three components, 

respectively.  

 

 

(a) 

 

(b) 

Figure 4-17. Histograms of wind speed along with the best fits from the corresponding 

probability density function for (a) Crete and (b) Mar de Alboran. 

 

Table 4-15. Parameters of the best-fit wind direction distributions used in bivariate 

modelling. 𝜅 and 𝜔 parameters are dimensionless and 𝜇 parameter is in rad. 

Parameters Crete Mar de Alboran 

𝜅𝑖, 𝑖 − 1,2, … 0.499 

1.359 

5.778 

8.964 

6.517 

5.361 

0.406 

𝜇𝑖, 𝑖 − 1,2, … 2.665 

2.007 

5.918 

4.824 

1.236 

4.544 

1.426 

𝜔𝑖, 𝑖 − 1,2, … 0.176 

0.164 

0.298 

0.362 

0.321 

0.464 

0.215 
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In Figure 4-18, the histograms of wind direction along with the vM mixture distributions are 

plotted for the examined locations. From the shape of these histograms, it is evident that the use 

of mixture of circular vM distributions for modelling wind direction at the examined locations 

is inevitable. 

 

(a) 

 

(b) 

Figure 4-18. Histograms of wind direction along with the fitted mixtures of vM distributions 

for (a) Crete and (b) Mar de Alboran. 

 

 

Bivariate distributions of wind speed and direction 

 

The values of the parameters 𝑟FGM and 𝜓𝛲 involved in the FGM (see Eq. (1.43)) and PLA (see 

Eq. (1.48)) family of distributions, respectively, are shown in Table 4-16. From the obtained 

values of 𝑟FGM it is concluded that the FGM model can be safely applied for the two locations, 

since −1 3⁄ ≤ 𝑟FGM ≤ 1 3⁄ . 

 

Table 4-16. Parameters of the bivariate models FGM and PLA. 

Parameters Crete Mar de Alboran 

𝑟FGM 0.106 0.263 

𝜓𝛲 1.150 1.208 

 

Regarding the JW family, in Table 4-17, the parameters of the vM mixture for modelling 𝜓 

variable, see Eq. (1.40), are provided for the examined locations and pdfs of wind speed. 

 

 

Evaluation of the fitted bivariate distributions 

 

For the evaluation of the obtained bivariate distributions RMSE, RRMSE, MAE, IA, 𝜒2 and 

𝑅𝑎,2
2 , along with the deviance statistic, are calculated. In Table 4-18 and Table 4-19, the values 

of the above measures are shown for the six best fit wind speed pdfs for the examined locations. 

Since the involved quantities in the estimation of these measures are expressed through 

frequencies (𝜒2 error represents ‘counts’), all presented measures are dimensionless. The wind 

speed distributions in the tables are sorted in a decreasing order according to the values of the 

𝑅𝑎,1
2  criterion. Boldface numbers denote the best value of the particular measure for each 

bivariate family, while both italics and boldface numbers denote the overall best value of the 

particular measure for all bivariate families. Furthermore, in Figure 4-19, the deviance statistic 

is plotted for each bivariate family. 
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Table 4-17. Parameters of the vM mixture of distributions for 𝜓 variable of the JW family 

for the examined locations. 𝜅1, 𝜅2, 𝜔1, 𝜔2 parameters are dimensionless and 𝜇1, 𝜇2 

parameters are in rad. 

Location Probability distributions and parameters 

Crete 

 GEV KAP LGN NN WAK WGEV 

𝜅1, 𝜅2 0.758  

0.372 

0.466  

0.747 

0.768  

0.464 

0.464  

0.769 

0.782  

0.478 

0.802  

0.404 

𝜇1, 𝜇2 5.709  

3.001 

2.938  

5.704 

5.710  

2.939 

2.972  

5.734 

5.755  

2.982 

5.768  

3.072 

𝜔1, 𝜔2 0.503  

0.497 

0.453  

0.547 

0.539  

0.461 

0.467  

0.533 

0.530  

0.470 

0.491  

0.509 

Mar de 

Alboran 

 GNG KAP NN WAK WGEV WW 

𝜅1, 𝜅2 0.348  

0.844 

0.218  

0.772 

0.762  

0.338 

0.229  

0.762 

0.746  

0.335 

0.274  

0.791 

𝜇1, 𝜇2 3.824  

0.642 

3.658  

0.583 

0.686  

3.875 

4.082  

0.735 

0.662  

3.812 

3.806  

0.658 

𝜔1, 𝜔2 0.467  

0.5333 

0.494  

0.506 

0.562  

0.438 

0.487  

0.513 

0.567  

0.433 

0.478  

0.522 

 

Some conclusions as regards the general behaviour of the three examined bivariate approaches 

can be summarized as follows:  

 

i. The overall largest values of 𝑅𝑎,2
2  and IA, and the overall smallest values of RMSE, MAE, 

RRMSE (except for Mar de Alboran), and 𝜒2 statistic (except for Mar de Alboran) are 

consistently provided by the JW family, i.e. JW family provides the optimal values for 

the test statistics in 16 out of 18 cases. Although the differences between the values of 

these measures with respect to the examined bivariate families are not large, JW family 

provides consistently the optimal values. This result suggest the superiority of the JW 

family in comparison to the FGM and the PLA families of distributions.  

ii. FGM family performs better than PLA family with respect to all measures of evaluation 

for Mar de Alboran while PLA family performs better than FGM family with respect 

RMSE, MAE, 𝜒2 and 𝑅𝑎,2
2  for Crete.  

iii. For Crete, the best-fitting models from all the examined families include mixture 

distributions for wind speed.  

 

(a) 

 

(b) 

Figure 4-19. Normalized deviations for JW, FGM and PLA bivariate families for (a) Crete 

and (b) Mar de Alboran. 
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As regards the specific performance of the JW, FGM and PLA families with respect to the 

univariate distributions of wind speed, the following conclusions can be drawn:  

 

i. The statistical measures examined do not provide, in general, compatible suggestions of 

the bivariate distribution fit performance. The issue of inconsistency between different 

statistical measures is known for the univariate evaluation of goodness of fit; see, for 

example, the relevant discussion in Zhou et al. (2010). Thus, the selection of the best fit 

is confined to the number (multitude) of criteria suggesting the optimal fit.  

ii. In general, the bivariate best-fit distribution is not provided by the corresponding 

univariate best-fit distribution for wind speed.  

iii. For Crete, the bivariate best-fit distribution is provided by the JW family for the WGEV 

mixture (RMSE, MAE, IA and 𝑅𝑎,2
2  provide the overall optimal values).  

iv. For Mar de Alboran, the bivariate best-fit distribution is provided by the JW family for 

the GNG distribution (RMSE, IA and 𝑅𝑎,2
2  provide the overall optimal values).  

 

In order to evaluate in further detail the comparative performance of JW, FGM and PLA 

families in the entire (𝑢, 𝜃) −plane, the normalized deviation 𝑑𝑖𝑗 is presented in Figure 4-19 

for the best bivariate fit for each family, according to the selection presented above. The values 

of the normalized deviation that are close to zero indicate a good fit of the adopted model. 

Negative and positive values indicate overestimation and underestimation, respectively, of the 

probability mass of the particular cell by the fitted distribution. According to the examined 

bivariate models and locations, the overall range of 𝑑𝑖𝑗 is between −5 and 12. Specifically, for 

Crete, all models underperform for wind directions around the northern sector with 

simultaneous high values of wind speed while for Mar de Alboran, it seems that the bivariate 

models underperform (although with a variable intensity) in an extended area of (𝑢, 𝜃) 
combinations. Overall, the poor performance of the bivariate models is more evident for the 

FGM and PLA families. The obtained results suggest that JW model performs better compared 

to the other two approaches; although the pattern of 𝑑𝑖𝑗 provided by the three families is almost 

identical for all the examined locations, the corresponding values are lower for the JW model. 

In conclusion, taking into consideration the results provided by the seven metrics used in this 

analysis, the JW family seems to provide consistently the best fits and may be used as a solid 

base for bivariate modelling of wind speed and direction (compared to FGM and PLA families). 

A potential improvement in the results of the JW model may be based on the consideration of 

non-negative trigonometric sums for the modelling of 𝑓Ψ(𝜓). As noted by Fernández-Durán 

(2007), the use of this representation may provide flexibility in the modelling of different (even 

of very complex) dependence structures. 

 

In Figure 4-20–Figure 4-22, the selected bivariate best-fit pdfs of wind speed and wind direction 

according to JW, FGM and PLA families of distributions for the examined locations are 

presented. In general, the patterns of the FGM and PLA models have a strong resemblance. As 

regards wind direction, the location of the peaks from the univariate vM mixture model is very 

close to the corresponding one of the bivariate case at each examined site. Similarly, as regards 

wind speed, the highest values of 𝑓𝑈,𝛩 are depicted in the ranges that are consistent with the 

histograms of Figure 4-17. Moreover, FGM and PLA models exhibit, in general, smoother 

shapes for 𝑓𝑈,𝛩 than JW family at each location. 
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(a) 

 

(b) 

Figure 4-20. Best-fit for bivariate pdfs of wind speed and wind direction for JW family for (a) 

Crete and (b) Mar de Alboran. 

 

 

(a) 

 

(b) 

Figure 4-21. Best-fit for bivariate pdfs of wind speed and wind direction for FGM family for 

(a) Crete and (b) Mar de Alboran. 

 

 

(a) 

 

(b) 

Figure 4-22. Best-fit for bivariate pdfs of wind speed and wind direction for PLA family for 

(a) Crete and (b) Mar de Alboran. 
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4.4.5 Application in wind energy assessment 
 

The preliminary assessment of the available offshore wind power potential in an area requires 

the estimation of the theoretical wind power density per rotor swept area. For a homogeneous, 

isotropic, free-stream air flow with wind speed 𝑢 = 𝑢∞, the theoretical wind power density 𝑃0 

is given by  

 

 𝑃0 =
1

2
𝜌𝑢∞

3 . (4.16) 

 

Due to the temporal and spatial variability of wind speed, wind direction and air density, more 

detailed information as regards wind power for different occurrences of these variables at the 

specific area is required during the stage of wind farm design and layout. In this respect, for the 

evaluation of wind energy at a particular location, the wind power density distribution is used. 

This quantity is estimated by  

 

 𝑒(𝑢, 𝜃, 𝜌) =
1

2
𝜌𝑢3𝑓𝑈,𝛩,𝛲(𝑢, 𝜃, 𝜌), (4.17) 

 

where 𝑓𝑈,𝛩,𝛲(𝑢, 𝜃, 𝜌) is the joint pdf of wind speed, air density and wind direction. 𝑒(𝑢, 𝜃, 𝜌) 
depicts how wind energy is distributed at different values of air density, wind speed and wind 

direction per unit time and swept area; see also Morrissey et al. (2010) and Carrillo et al. (2014). 

Assuming that air density is constant, Eq. (4.17) is simplified to  

 

 𝑒(𝑢, 𝜃; 𝜌) =
1

2
𝜌𝑢3𝑓𝑈,𝛩(𝑢, 𝜃). (4.18) 

 

The total wind power density can be obtained from the above relation by 

 

 𝐸(𝑢, 𝜃; 𝜌) =
1

2
∫ ∫ 𝜌𝑢3𝑓𝑈,𝛩(𝑢, 𝜃)

2𝜋

0

𝑢max

𝑢min

d𝑢d𝜃, (4.19) 

 

where 𝑢min, 𝑢max are the values of the minimum and maximum observed wind speed in the 

area, respectively. Moreover, the output 𝐸𝑇(𝑢, 𝜃) from a single wind turbine, with a power 

curve 𝑃𝑇 is obtained by 

 

 𝐸(𝑢, 𝜃; 𝜌) = 𝑇𝑟∫ ∫ 𝑃𝑇(𝑢)𝑓𝑈,𝛩(𝑢, 𝜃)
𝜃2

𝜃1

𝑢2

𝑢1

d𝑢d𝜃, (4.20) 

 

where [𝑢1, 𝑢2] is the effective range of wind speed for the particular turbine, [𝜃1, 𝜃2] is the 

domain of wind directions at the particular site, and 𝑇𝑟 is the particular time period considered. 

 

From Eq. (4.18) very useful and detailed characteristics of the available wind resource can be 

obtained at an area that can be further used as design parameters for the wind turbines and wind 

farm layout; see also Carta et al. (2008b). In this connection, in Figure 4-23(a), the wind power 

density per wind speed for five different and characteristic wind directions, i.e. 𝑒(𝑢, 𝜃 = 𝜃0; 𝜌), 
is depicted for Mar de Alboran. 



Chapter 4 

111 

 

(a) 

 

(b) 

Figure 4-23. Wind power density at various wind directions as a function of (a) wind speed 

and (b) wind direction. 

 

Note that Mar de Alboran, the wind power density takes its maximum value for the prevailing 

wind direction, which is the typical parameter for setting the wind farm layout (Ng and Ran, 

2016). However, there can be cases when the maximum of the wind power density curve is 

obtained for the mean wind direction, suggesting that the most probable value of wind direction 

is not necessarily the one that provides the maximum wind power density. In Figure 4-23(b), 

the wind power density per wind direction for three wind speed ranges is provided, i.e. 

∫ 𝑒(𝑢, 𝜃; 𝜌)d𝑢
𝑢2
𝑢1

, where [𝑢1, 𝑢2] is the particular wind speed range considered. Evidently, the 

range [0,∞) for wind speed provides the largest values of wind power density. Note that if the 

horizontal axis in the latter figure is expressed in degrees then the values of the depicted 

distribution of wind power density will change. 

 

The above presented methodology can be directly and equally well applied for estimating the 

bivariate pdf of wind speed and direction at the turbine hub height. Combining this information 

with the turbine characteristics, the annual energy production of a wind farm can be estimated; 

see also Chowdhury et al. (2013). 

 

 

4.4.6 Final comments and discussion 
 

The obtained results provided consistently the best values with respect to the above statistical 

measures for the JW model, suggesting more appropriate fits at the two examined locations 

compared to the other models. Therefore, it can be concluded that the JW family may be used 

as a solid base for bivariate modelling of wind speed and direction (compared to the FGM and 

PLA families). Moreover, in the Greek location, the best bivariate fit for each examined family 

was obtained with respect to marginal mixture distributions for wind speed. On the other hand, 

the best-fit wind speed distributions did not provide in general the best-fit models in the 

bivariate case. In this respect, it seems that the consideration of several different (and not only 

the best-fit) marginal wind speed distributions is necessary for obtaining the best bivariate fit. 

FGM and PLA families provided values of the proposed statistical measures very close to each 

other, with the former one performing better than the latter one in the majority of cases. After 

obtaining the best bivariate model for the Spanish location, it was applied for estimating wind 

power density per wind speed and per wind direction as a real-world scenario in wind farm 

design.  

 

Nevertheless, further research in bivariate modelling of wind speed and direction seems to be 

essential. A step towards this direction may consist in the implementation of suitable models 

from the fields of bivariate copulas and kernel density functions. Furthermore, the consideration 
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of alternative circular models for the modelling of 𝑓𝛹(𝜓) and/or 𝑓𝛩(𝜃) (e.g. through non-

negative trigonometric sums) in the JW model may provide more detail in the dependence 

structure of wind speed and wind direction and more accuracy in the representation of the 

bivariate family. 

 

 

4.4.7 Recent advances 
 

The superiority of JW has also been proved in another analysis, whose results have not been 

published yet, that deals with the simultaneous study of wave energy flux and mean wave 

direction by means of parametric and non-parametric bivariate distributions in the Greek Seas. 

This study stresses the importance of including the directional wave parameter in wave energy 

resource assessment studies through a straightforward application from the methodology 

presented. The joint description of these two variables have not been presented yet in relevant 

studies, although it is of high importance for the emerging wave energy sector. Let us note that 

it is not among the scopes of this work to examine wave energy potential in Greece rather than 

propose a methodology that should be employed in wave energy resource assessment studies, 

especially when the performance of the wave energy converter is dependent on wave direction 

(e.g. the Pelamis device). 

 

In the context of this work, numerous parametric models have been addressed, either 

conventional or mixture, and two non-symmetric kdf (Gamma and Lognormal kdfs) for the 

linear variable in the univariate case. The directional variable is adequately described with one 

parametric pdf (a finite mixture of the von Mises distribution) and one kdf (the Wrapped 

Normal kernel model). After a thorough evaluation similar to the one presented in Section 4.4.3, 

the best univariate (parametric) models for the linear variable are selected to proceed in the 

bivariate case. The construction of the bivariate distribution functions of the examined 

parameters (i.e. wave energy flux and mean wave direction) is accomplished through three 

families of distributions in the parametric case, i.e. FGM and PLA families of distributions and 

JW model, and the multiplicative kdf in the non-parametric case. A common feature to all these 

bivariate models (parametric and non-parametric) is that their density functions rely on the 

corresponding univariate marginal distributions, which are known beforehand (coming from 

the marginal data) while the parametric bivariate models rely as well on an additional parameter 

that quantifies the correlation/dependence of the variables. A detailed evaluation of the resulting 

bivariate distributions is made by applying six bin-defined statistical metrics. 

 

Indicatively, some preliminary results from this analysis are presented for Zakynthos location. 

In Figure 4-24, the histograms of wave energy flux and wave direction are shown along with 

the corresponding univariate distributions. The two kdfs and the WW model present a very 

similar behaviour as regards the linear variable while the two fitted directional models seem to 

be close to each other with small deviations regarding the peaks at 70° and 285° with the 

Wrapped Normal kdf underestimating the histogram in both cases. 

 

The values of the evaluation metrics for the bivariate parametric and non-parametric 

distributions are provided for Zakynthos buoy in Table 4-20. Boldface numbers denote the best 

value obtained from each metric for the examined bivariate families. For three out of six 

evaluation metrics Lognormal kdf is the best model compared to both parametric and non-

parametric models and for three out of the six evaluation metrics the JW model provides the 

best fit (but for two different parametric models).  
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(a) 

 

(b) 

Figure 4-24. Histograms of (a) wave energy flux along with the best fits of the parametric 

and non-parametric linear distributions and (b) wave direction along with the fitted 

circular distributions for Zakynthos. 

To sum up, the results from both studies demonstrate the significance in the use of parametric 

univariate or bivariate models that are characterized by simplicity and straightforward 

implementation and can capture almost all the information of a data set into just a small number 

of parameters. Furthermore, the inconsistency between univariate and bivariate distributions 

confirms the value of the proposed methodology in ocean energy assessment studies.  

 

Table 4-20. Values of the goodness-of-fit criteria for three bivariate families of two 

parametric models and the bivariate kernel models for Zakynthos. 

Evaluation 

measures 

NN WW 
GAM kdf LGN kdf 

JW FGM PLA JW FGM PLA 

IA 0.994 0.981 0.993 0.994 0.982 0.992 0.992 0.993 

MAE 0.366 0.487 0.401 0.371 0.489 0.409 0.275 0.269 

𝑅𝑎,2
2  0.979 0.930 0.972 0.977 0.931 0.970 0.976 0.976 

RMSE 1.533 2.785 1.773 1.591 2.757 1.848 1.742 1.647 

RRMSE 0.243 0.245 0.245 0.226 0.227 0.222 0.177 0.176 

𝜒2 273 492 372 251 466 335 169 162 

 

 

4.5 Extreme modelling of metocean parameters including directionality 
 

4.5.1 Synopsis 
 

A wide range of wave energy applications rely on the accurate estimation of extreme wave 

conditions while some of them are frequently affected by directionality. In this section, four 

offshore/nearshore locations in the eastern Mediterranean Sea are selected with relatively high 

wave energy flux values and extreme wave heights are examined with wave direction as a 

covariate. The GP distribution is used to model the extreme values of wave height over a pre-

defined constant threshold, with its parameters being expressed as a function of wave direction 

through a smooth form of Fourier series. In order to be consistent with the analysis obtained 

from the independent fits for the eight directional sectors of 45-degree width, the estimation of 

parameters is based on a penalized maximum likelihood criterion that ensures a good agreement 

between the two approaches. The obtained results validate the integration of directionality in 

extreme value models for the examined locations, and design values of significant wave height 

are provided with respect to direction for the 50- and 100-year return period with bootstrap 

confidence intervals. 

 

This analysis has been accepted for publication in: 
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Karathanasi, F., Belibassakis, K., Soukissian, T. Directional extreme value models in wave 

energy applications. Atmosphere, in press. 

 

 

4.5.2 Data and numerical results 
 

Reanalysis wave data from the ERA-Interim database for four grid points located in the Eastern 

Mediterranean Sea were used. The locations were selected according to their potential for 

development of wave energy projects due to their high estimates of wave energy flux; see for 

example, Ayat (2013); Karathanasi et al. (2015); Besio et al. (2016); Emmanouil et al. (2016). 

The wave parameters that were obtained for the purposes of this work were the significant wave 

height 𝐻𝑆 and the mean wave direction 𝜃𝑊. The geographical coordinates, the measurement 

period and the sample size of each grid point are listed in Table 4-21.  

 

Table 4-21. Station names, geographical locations, recording periods and sample sizes of 

wave time series. 

Buoy name Latitude, Longitude (°) Period Sample size 

Aegean Sea 37.75°N, 25.25°E 

1979–2014 52596 
Ligurian Sea 43.25°N, 9.75°E 

Otranto Str. 40.25°N, 19.00°E 

Sicily Str. 37.75°N, 12.25°E 

 

The results for the basic statistical parameters for 𝐻𝑆 are presented in Table 4-22. The grid point 

at Sicily Strait (hereafter, called ‘Str.’) seems to be a location with intense waves and moderate 

variability followed by that in the Aegean Sea, which has values of skewness 𝑆𝑘𝐻𝑆  and kurtosis 

𝐾𝑢𝐻𝑆  closer to zero denoting a less asymmetric dataset. On the other hand, the grid points at 

the Ligurian Sea and Otranto Str. present higher variability and lower mean and median values. 

 

Table 4-22. Basic (linear) statistics of significant wave height 𝐻𝑆 at the examined locations. 

Location 
𝒎𝑯𝑺 

(m) 

𝐦𝐞𝐝𝑯𝑺  

(m) 

𝐦𝐢𝐧𝑯𝑺  

(m) 

𝐦𝐚𝐱𝑯𝑺 

(m) 

𝒔𝑯𝑺 

(m) 

𝑪𝑽𝑯𝑺  

(%) 

𝑺𝒌𝑯𝑺 

(–) 

𝑲𝒖𝑯𝑺 

(–) 

Aegean Sea 1.0 0.8 0.1 5.4 0.7 69.5 1.3 5.3 

Ligurian Sea 0.6 0.5 0.1 5.4 0.5 80 1.8 7.6 

Otranto Str. 0.5 0.3 0.0 3.8 0.4 85.5 1.9 7.7 

Sicily Str. 1.0 0.8 0.1 6.4 0.7 74.4 1.7 7.1 

 

In Table 4-23, the values of the basic circular parameters for 𝜃𝑊 are provided. The rather high 

value of 𝐾𝑢𝜃𝑊  for the Aegean Sea (0.5) denotes a rather peaked distribution of wave directions, 

which is also confirmed by the low value of 𝑠𝜃𝑊 (1.1). The low values of 𝑅𝜃𝑊  denote a weak 

concentration of data about the mean direction.  

 

Table 4-23. Basic (circular) statistics of wave direction at the examined locations. 

Location 
𝒎𝜽𝑾 

(deg) 

𝑹𝜽𝑾 

(–) 

𝑽𝜽𝑾 

(–) 

𝒔𝜽𝑾 

(–) 

𝑺𝒌𝜽𝑾  

(–) 

𝑲𝒖𝜽𝑾 

(–) 

Aegean Sea 353.5 0.4 0.6 1.1 0.4 0.5 
Ligurian Sea 272.3 0.3 0.7 1.2 −0.2 0.2 
Otranto Str. 240.1 0.2 0.8 1.3 −0.3 −0.3 
Sicily Str. 287.5 0.4 0.6 1.1 0.3 0.2 

 

For each examined location, seven different combinations of the methods for threshold 

selection and declustering are performed, i.e., each of the threshold selection methods (mean 
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excess function, threshold stability plot, percentile) is combined with runs and intervals 

declustering methods along with DeCA declustering method, from which the threshold is 

obtained as the median of the declustered values. Firstly, the threshold values of 𝐻𝑆 are 

estimated irrespective of 𝛩𝑊. After a sensitivity analysis, the 95th percentile was used to derive 

threshold values, since higher percentiles provided a smaller sample of extreme data that result 

in large variance. As regards threshold values from mean excess and threshold stability plots, 

the packages ‘evmix v2.11’ and ‘extRemes v2.0.10’ in R were used, respectively; the 

corresponding graphs are provided in Figure 4-25. In Table 4-24, the threshold values of 𝐻𝑆 for 

each location and method are summarized. The maximum threshold values are systematically 

provided by the DeCA method while the minimum ones from the mean excess. It is obvious 

from the mean excess plots of all locations that the decreasing behaviour of the mean excess 

function shows that the higher we go in the sample data, the lower the excess values are, 

indicating a thin-tailed behaviour of the distribution. 

 

Table 4-24. Threshold values of significant wave height by threshold selection method for 

the examined locations. 

Threshold selection method Aegean Sea Ligurian Sea Otranto Str. Sicily Str. 

95th percentile 2.32 1.62 1.24 2.47 

Mean excess function 1.90 1.30 0.96 2.00 

Threshold stability 2.10 1.50 1.00 2.10 

DeCA 2.61 1.89 1.25 2.66 

  

(a) 

  

(b) 
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(c) 

  

(d) 

Figure 4-25. Plots of mean excess function (left panels) and threshold stability (right 

panels) for (a) Aegean Sea, (b) Ligurian Sea, (c) Otranto Str., and (d) Sicily Str. 

In Table 4-25, the number of exceedances for 𝐻𝑆 after implementing the declustering methods 

for each threshold selection method is provided for the examined locations. These 𝐻𝑆 

exceedances along with the corresponding values of 𝛩𝑊 are used for fitting the directional 

extreme value model described in Section 3.7. Let it be noted that for runs declustering, a run 

length of 36h was chosen as the most representative for the examined locations, providing 

sufficient data for the subsequent analysis. Mean excess function and intervals declustering 

method provide systematically the largest number of exceedances for all locations. On the other 

hand, DeCA provides the smallest one, rendering its position disadvantageous in the directional 

extreme value analysis, since a sufficient number of exceedances (>20 (𝐻𝑆, 𝛩𝑊) pairs of 

extreme values) is preferred for each 45-sector in order to obtain reliable results from the GP 

distribution fit. 

 

With the final exceedances in hand, the LR test was performed to determine the order of the 

Fourier model that sufficiently describes the variability of the extreme value parameters for 

each location. As shown in Table 4-26, the majority of the considered combinations of methods 

for threshold selection and declustering for the examined locations concerns the first order 

Fourier model apart from Ligurian Sea, where the higher order model indicates its directional 

complexity. Let it be noted that the initial values for the ML approach are obtained by 

estimating the parameters of the Fourier model from the independent fits by least squares 

method, which implies a sufficient number of equations according to the number of the 

unknown parameters (i.e. the order of the Fourier model). Thus, in order to ensure a fair 
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comparison between the combinations of the abovementioned methods, when the number of 

the 45-width sectors with sufficient number of exceedances (>20) was less than three (out of 

eight) for the first order Fourier model, the corresponding combination of methods was omitted 

from the analysis. The restriction for the second and third order models is five and seven sectors, 

respectively. The results of Table 4-26 in italics denote the combinations of methods that satisfy 

these two restrictions. DeCA method is not included henceforth because even for the first order 

model, the sectors satisfying the above conditions was less than three.  

 

In the estimation of parameters with the penalized ML, an additional constant 𝑤 needs to be 

determined. This constant is estimated based on the minimum value of mean absolute error 

between the estimated parameters from the directional extreme model and the ones obtained by 

the independent fits from the successive directional sectors of 45-degree width, provided 

simultaneously for both extreme parameters 𝜉 and 𝜎𝑢. The obtained results are shown within 

the parenthesis in Table 4-26.  

 

In this part of the analysis, the standard directional extreme value model was also considered 

(i.e. when the parameters are estimated without the consideration of the penalty term) in order 

to verify the use of the penalized factor in the directional model for the estimation of the 

parameters. Two examples are provided in Figure 4-26 for Ligurian Sea and Otranto Str. 

locations considering different combinations of methods, a different order for the Fourier model 

and different weighting constants 𝑤. The solid line corresponds to the standard directional 

model (i.e. 𝑤 = 0), the dashed line corresponds to the directional model, the parameters of 

which were estimated using the penalized ML with the corresponding weighting constant 𝑤 

(see also Table 4-26) and the circles correspond to the estimates of the parameters obtained 

from independent fits with data from successive sectors (with width 45°) that are assumed to 

follow a GP distribution. From this figure it is shown that the estimates obtained from the 

penalized ML provide systematically better results than the standard method when compared 

with the estimates derived from the fits of successive sectors, even for a small weighting 

constant. 

 

Table 4-25. Number of exceedances of significant wave height for each combination of 

methods and for all locations. 

Threshold 

selection method 

Declustering 

method 
Aegean Sea Ligurian Sea Otranto Str. Sicily Str. 

95th percentile 
Runs 323 340 297 288 

Intervals 671 830 782 669 

Mean excess 

function 

Runs 383 374 326 328 

Intervals 1234 1303 1229 1064 

Threshold 

stability 

Runs 365 359 325 322 

Intervals 939 991 1165 963 

DeCA DeCA 197 285 308 233 

 

Table 4-26. Order of the Fourier model and value of the weighting constant 𝑤 (within 

parenthesis) for each combination of methods and for all locations. 

Threshold 

selection method 

Declustering 

method 
Aegean Sea Ligurian Sea Otranto Str. Sicily Str. 

95th percentile 
Runs 1 (0.20) 3 (0.24) 1 (0.13) 1 (0.06) 

Intervals 1 (0.03) 3 (0.18) 1 (0.12) 1 (0.01) 

Mean excess 

function 

Runs 1 (0.31) 2 (0.42) 1 (0.22) 1 (0.10) 

Intervals 2 (0.09) 1 (0.17) 3 (0.03) 1 (0.02) 

Threshold 

stability 

Runs 1 (0.17) 3 (0.42) 1 (0.17) 1 (0.29) 

Intervals 1 (0.02) 1 (0.30) 1 (0.03) 3 (0.03) 

DeCA DeCA 1 (0.20) 3 (0.24) 1 (0.13) 1 (0.20) 
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(a) 

 

(b) 

Figure 4-26. Estimated parameters 𝜉 and 𝜎𝑢 of the directional extreme value model 

obtained with the consideration of the penalty term (dashed line) and without (solid line) 

for (a) Ligurian Sea, and (b) Otranto Str. Circles represent the estimates from the 

independent fits of the 45-degree sectors.  

From these preliminary results in the selected locations, it is evident that both the use of the 

directional extreme value model and the inclusion of the penalty term in ML method are 

essential for the reliable estimation of the design values of 𝐻𝑆 and the confidence intervals. 

 

We proceed with the estimation of the design values of 𝐻𝑆 for 50- and 100-year return period 

for the combination of methods that provide the largest sample size of exceedances, i.e. the 

mean excess function for threshold selection and the intervals declustering method. In Table 

4-27, the values of the estimates and the corresponding 95% confidence intervals using the 

BCA bootstrap method, with number of bootstrap samples 𝑅 = 2000, are given for all 

locations. As was concluded Coles and Simiu (2003), bootstrapping can provide reliable and 

realistic estimates for uncertainties in extreme value analysis if carefully implemented. 

 

Figure 4-27 shows 𝐻𝑆 design values with direction for the 50- and 100-year return period by 

considering three different approaches; the blue solid line represents the estimates from the 

proposed directional model, the green dashed line represents the estimate obtained by the GP 

distribution without the consideration of the directional complexity of its parameters (omni-

directional case) and the red circles represent the estimates from the independent fits of the 

eight consecutive directional sectors. In order to assure consistency between the results from 

the omni-directional case and the independent fits from each directional sector, the return period 

is multiplied by the number of sectors as was suggested by Forristall (2004). In this way, the 

product of the probabilities obtained from each sector equals the probability of non-exceedance 

from the omni-directional criterion. For all locations, the design value obtained from the 

standard GP fit is lower compared to the estimates provided at the peaks of the directional 

model. Moreover, the design values estimated by the sectors with the largest number of 

observations are always higher than the corresponding design value obtained from the standard 

GP fit. The performance of the proposed directional model is apparently satisfactory for Aegean 

Sea and Otrantro Str. (Figures 4–27(a) and (b), respectively) while for the rest locations the 

model has relatively large deviations from the independent fits at particular directional sectors; 

see, e.g. the south-western directional sector of Figure 4-27(d). A possible explanation could 

be the low order of the Fourier model; see also lower left panels of Figure 4-28(b) and (d), 

where the range of the lower bounds of confidence intervals is relatively high.  
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Table 4-27. Point and interval estimates of the directional model for all locations. 

Parameter Aegean Sea Ligurian Sea Otranto Str. Sicily Str. 

𝐴10 −0.17 

(−0.55, −0.06) 

−0.07 

(−0.25, −0.03) 

−0.24 

(−0.58, −0.15) 

0.00 

(−0.40, 0.06) 

𝐴11 0.10 

(−0.28, 0.18) 

−0.02 

(−0.20, 0.03) 

0.00 

(−0.25, 0.06) 

−0.16 

(−0.79, −0.07) 

𝐴21 −0.20 

(−0.54, −0.11) 

0.07 

(−0.13, 0.14) 

0.16 

(−0.35, 0.28) 

−0.02 

(−0.57, 0.08) 

𝐴12 0.14 

(−0.05, 0.21) 
 

0.16 

(−0.30, 0.24) 
 

𝐴22 0.06 

(−0.42, 0.23) 
 

0.15 

(−0.25, 0.25) 
 

𝐴13 
  

0.15 

(−0.38, 0.28) 
 

𝐴23 
  

−0.07 

(−0.28, −0.02) 
 

𝐵10 0.66 

(0.36, 0.74) 

0.54 

(0.46, 0.56) 

0.50 

(0.26, 0.54) 

0.71 

(0.27, 0.74) 

𝐵11 −0.02 

(−0.27, 0.05) 

0.17 

(0.03, 0.21) 

−0.14 

(−0.31, −0.10) 

0.37 

(−0. 45, 0.44) 

𝐵21 0.35 

(−0.13, 0.48) 

−0.06 

(−0.18, 0.00) 

−0.01 

(−0.21, 0.06) 

−0.09 

(−0.96, −0.01) 

𝐵12 −0.13 

(−0.39, −0.07) 
 

−0.01 

(−0.21, 0.05) 
 

𝐵22 0.00 

(−0.57, 0.15) 
 

−0.14 

(−0.27, −0.06) 
 

𝐵13 
  

−0.03 

(−0.23, 0.03) 
 

𝐵23 
  

0.09 

(−0.07, 0.13) 
 

 

In the upper panels of Figure 4-28, the wave rose diagrams of 𝐻𝑆 and 𝛩𝑊 representing the 

exceedances obtained from the implementation of mean excess function for threshold selection 

and the intervals declustering method are presented for all locations. In the lower panels of 

Figure 4-28, the 50- and 100-year 𝐻𝑆 design values are shown along the 95% confidence 

intervals estimated by the BCA method. These levels seem reasonable when considering that 

the expected lifetime of wave energy converters is 20–25 years on average. A general remark 

concerning all locations is that the range between the 𝐻𝑆 design value and the upper bounds is 

much smaller than the corresponding range with the lower bounds. Another remarkable result 

is that in two locations it is not expected to encounter extreme 𝐻𝑆 values from the dominant 

directional sector but from the next one, which may have a more limited amount of data. Since 

the results of the 50- and 100-year return period are similar, the following comments can be 

summarized for both return periods per location: 

 

 For Aegean Sea, the dominant sector for extreme wave heights is the northern one, 

probably attributed to the Etesian winds, which gives extreme values up to 7m at this 

sector, and lower values characterizes the rest directional sectors (e.g., for the sector 

[50°, 310°] the 𝐻𝑆 value is 4.3m in the mean) as regards the 50-year return period. 

Furthermore, the low values of the lower bound of the 95% confidence intervals in the 

north-western sector can be justified by the lack of data obtained from the 

implementation of the specific combination of methods. 

 For Ligurian Sea, the north-eastern sector is characterized by high values of 𝐻𝑆 (5.4m 

for the 50-year return period), even though it is the second dominant directional sector 

for 𝐻𝑆, while the southern sector, with the least amount of extreme data, provides the 

lowest values (3.6m). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-27. 𝐻𝑆 design values for the 50-year return period obtained by the proposed 

directional model (blue solid line), the GP distribution without the consideration of 

directionality (green dashed line) and the independent fits for (a) Aegean Sea, (b) Ligurian 

Sea, (c) Otranto Str., and (d) Sicily Str.  

 

 For Otranto Str., the two dominant wave directions (in the south and south-eastern 

sectors) are translated in two consecutive peaks in the 𝐻𝑆 design value graphs while the 

two concave forms (in the north-eastern and western sectors) correspond to the sectors 

with the minimum amount of extreme data. Note that the form of the lower bounds differs 

from the one of the 𝐻𝑆 design value. 

 For Sicily Str., the location with the most intense sea states according to the analysed 

hindcast wave data, the second dominant directional sector for 𝐻𝑆 (i.e., the western) is 

characterised by the highest 𝐻𝑆 design values (8.4m for the 50-year return period) and 

the lowest values are observed for the south-eastern sector (5.9m for the 50-year return 

period). This location presents the highest uncertainty in the estimation of the design 

values; the largest difference between the lower bounds and the 𝐻𝑆 design value is close 

to 6.3m for the 50-year return period encountered in the south-western sector.  
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(a) 

 

  

(b) 
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(c) 

 

  

(d) 
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Figure 4-28. Wave rose of 𝐻𝑆 exceedances (upper panel) and 𝐻𝑆 design values for 50-year 

(left column) and 100-year return period (right column) with bootstrap 95% confidence 

intervals for (a) Aegean Sea, (b) Ligurian Sea, (c) Otranto Str., and (d) Sicily Str. 

 

 

4.5.3 Final comments 
 

Estimation of design values of wave parameters by means of directional extreme value models 

can be in favour of extreme value models that ignore direction in wave energy applications, 

where the consideration of directionality is crucial in the design of marine structures. With the 

increasing availability of long-term directional metocean data mainly from numerical models, 

it is strongly advised to take advantage of directional extreme value models in optimizing the 

performance and costs of marine facilities.  

 

In this analysis, long-term wave data from four locations in the eastern Mediterranean Sea were 

analysed. Three threshold selection and two declustering methods were combined to examine 

the corresponding effect in the determination of the order of the Fourier model and in turn, in 

the parameter estimates and design values and their uncertainties. After selecting the 

appropriate threshold for each method for the identification of extreme wave heights and 

applying the proposed declustering techniques due to the prerequisite of independence, a 

Fourier form was used to model the parameters of the Generalized Pareto distribution as a 

smooth function of wave direction. A penalised maximum likelihood was implemented to 

estimate extreme parameters and ensure consistency with the directionally independent fits. In 

the majority of the combinations of methods, the first order Fourier series model was found to 

be adequate for the description of extreme wave heights with direction while higher order 

models were necessary particularly for locations with more complex directional features, like 

the location in the Ligurian Sea. Directional design values of significant wave height were 

provided for the 50- and 100-year period as an objective criterion for design specification 

purposes and predict reliable extreme wave conditions during the lifetime of a wave energy 

facility. Confidence intervals of 95% were also provided by the bias-corrected and accelerated 

bootstrap method. Finally, the present analysis may be useful in other applications related to 

marine renewable energy sectors, such as the offshore wind sector, and coastal engineering 

studies (e.g., coastal erosion/accretion studies due to wave action coming from multiple 

directions).  
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Chapter 5 Studying the coastal environment under different 

time scales  

5.1 General 
 

Coastal zones receive a wide range of environmental pressures coming either from natural 

processes (e.g. sea-level rise, storm surges, hurricanes, etc.) or anthropogenic activities (e.g. 

fisheries, oil and gas extraction, harbour facilities, tourism, etc.). Adding the increasingly 

disproportional rates of coastal population density compared to the inland (Neumann et al., 

2015), there is an imperative need to manage and protect such areas, as well as human life, 

effectively. Among the measures that should be taken into account is the forecast of coastal 

morphological changes that are mainly driven by sediment transport gradients.  

 

The essential properties of coastal morphodynamic processes are the interaction between 

bathymetry/topography and fluid dynamics (Cowell and Thom, 1994; Dodd et al., 2003) that, 

on the other hand, are responsible to a great extent for the volume displacement during sediment 

transport. However, morphological changes depend on the evolutionary nature of all the 

involved complex processes. Sufficient knowledge of coastal geomorphology, wind and wave 

climate, and the corresponding complex interaction with sediment particles, and better 

understanding of all the underlying coastal dynamics in various spatio-temporal scales render 

coastal evolution more predictable. 

 

A wide research field for the representation of coastal dynamics and morphological evolution 

is based on deterministic (i.e. process-based) coastal area models, which may include both 

dimensions in the horizontal plane (2DH model) based on depth-integrated quantities, a vertical 

profile description added to the 2DH model (quasi-3D model) or the fully three‐dimensional 

equations (3D model), and the representation of the examined processes is computer-based; 

see, for example, the review of Amoudry and Souza (2011). In a relatively short time and at a 

low cost, different parameters and scenarios can be applied and tested in the context of an 

engineering problem but the inherent complexity of the abovementioned dynamic processes 

renders the development of reliable models a rather demanding task. A lot of research has been 

carried out in order to develop reliable coupling models, nesting techniques and modelling 

systems that can scale down the forcing from a large scale (e.g. oceanic waters) to a local one 

(e.g. coastal waters) so as to predict as accurate as possible sediment transport rates and 

morphological evolution in coastal areas. Moreover, the understanding of such dynamic 

mechanisms is crucial not only for the human-oriented activities in the coastal environment and 

the design and stability of coastal structures but also for the quality of the water by transferring 

pollutants (Gong et al., 2011) and the ecosystem sustainability of nearshore areas, since 

sediment contributes to the supply and distribution of nutrients and organic materials (Ikeda et 

al., 2009).  

 

Among the marine dynamic processes, the significance of winds, and hence waves, stands out 

mainly due to their structuring nature on the coastal environment in terms of morphological 

formation and composition. For instance, high-energy ocean events influence, among others, 

erosion-accretion dynamics by affecting the sediment transport rates of a beach while changes 

in wave climate (including wave direction) may also affect the sedimentary system (Adams et 

al., 2011). The degree of severity from the impacts of such an event at a beach depends not only 

on the characteristics of the event per se but also on the characteristics of the beach and the 

sensitivity of the surrounding ecosystems. Based on the perspective of the frequency and 

amplitude of waves, two common modelling approaches for the consideration of wave action 

in sediment transport modelling that can be implemented are the following: the first one deals 

with the action of individual high waves that collide with the shore for a short time window 



Modelling wave propagation 

128 

(e.g. several hours), and the second one takes into consideration the accumulative action of 

waves throughout a typical year, with high-energy waves during winter and low-energy waves 

during summer; see, e.g. Ferreira (2005); Callaghan et al. (2009); Karunarathna et al. (2012); 

Coco et al. (2014).  

 

The purpose of this chapter is to address the fundamental concepts of wave modelling and wave 

propagation from the offshore to the coastal areas, define the main features that concern 

sediment transport and discuss how the two different considerations of time affect the 

equilibrium of coastal systems. Specifically, in Section 5.2 phase-averaged wave propagation 

models are briefly discussed and Section 5.3 addresses some general concepts for sediment 

characteristics which depend on the combined action of waves and currents. In Section 5.4, the 

first case study is presented with the Varkiza bay being studied under the perspective of episodic 

events that act for a short time window (hours to some days) and had direct impacts on the 

coastal topography of the beach. The second case study, discussed in Section 5.5, refers to Sitia 

bay, and deals with the accumulative wave action, where erosion behaviour is governed by the 

interaction of storm events and calm periods.  

 

 

5.2 Modelling wave propagation 
 

Wave action is a dominant factor in the coastal zone by influencing geometry and forming the 

composition of beaches through currents and sediment transport. When studying coastal 

morphology, wave transformation, i.e. changes in wave characteristics during wave 

propagation from the offshore to the nearshore waters, is an essential information since wave 

data from in situ measurements (e.g. from moored buoys) and gridded data sets (global wave 

models and satellite measurements) are available far from shore. Depending on the spatial and 

temporal scales, wave evolution can be described by two basic categories of mathematical 

models. The first one is the phase-resolving models that are based on mass and momentum 

conservation equations for calculating detailed wave characteristics; mild-slope (Kirby and 

Dalrymple, 1986) and Boussinesq models (Madsen et al., 1991) belong to this class. These 

models are computationally expensive thus they are suitable for the wave propagation in 

shallow waters, where the wave properties vary rapidly, and of limited spatial extent. The 

second one is the phase averaged (or spectral wave) models that are based on the conservation 

of the wave action density (Bretherton and Garrett, 1968; Andrews and Mcintyre, 1978) in the 

presence of currents varying in space, mainly applied for areas (from global to regional spatial 

scale) in deep water where wave properties vary slowly; see, e.g. Komen et al. (1994); Booij et 

al. (1999).  

 

The wave action balance equation, which is the governing equation for the latter wave models, 

can be written in Cartesian co-ordinates as follows:  

 

 
𝜕𝑁

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑐𝑥𝑁) +

𝜕

𝜕𝑦
(𝑐𝑦𝑁) +

𝜕

𝜕𝜎
(𝑐𝜎𝑁) +

𝜕

𝜕𝜃
(𝑐𝜃𝑁) =

𝑆

𝜎
, (5.1) 

 

where 𝑁 is the wave action density, defined as the ratio of the energy density spectrum and 

relative angular frequency (𝑁 = 𝐸 𝜎⁄ ), 𝑡 is the time, 𝑐 is the propagation velocity in the four-

dimensional space 𝑥, 𝑦 (Cartesian coordinates in two horizontal directions), 𝜎 and 𝜃 (direction 

of wave propagation), and 𝑆 is the source term of wave energy balance representing the 

summation of linear and non-linear interactions. These interactions include the following 

physical processes that generate, redistribute or dissipate wave energy: wave growth by wind 

action, wave energy transfer due to non-linear wave-wave interaction and dissipation of wave 

energy due to white-capping, bottom friction and wave breaking. The solution of Eq. (5.1) 

provides wave predictions across a computational grid based on the evolution of the wave 

spectrum.  
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Among the most popular third generation global wave models that are extensively applied for 

wave forecasting and the assessment of wave resources in a large spatial scale are the 

Simulating Waves Nearshore (SWAN) model, developed at the Delft University of Technology 

(Holthuijsen et al., 1993), Wave Action Model (WAM) model, developed by the WAMDI 

Group (Group, 1988), WAVEWATCH III (Tolman, 1997) based on WAM model, and MIKE 

21 SW of the MIKE 21 suite, developed by the Danish Hydraulics Institute (DHI) International 

(DHI, 2016).  

 

 

5.3 Sediment transport: concepts and characteristics 
 

As waves approach the shoreline into shallow water depths, their properties, e.g. wavelength, 

wave height, period and direction of propagation, are modified significantly and are 

redistributed due to the varying bathymetry. In particular, within the coastal environment, a part 

of the wave energy is responsible for the agitation and movement of the bed material (e.g. wave 

breaking) while wave-induced currents are usually the dominant factor for its transport. For 

example, relevant studies for the estimation of bed load due to the wave action solely or the 

combination of waves and currents can be found in Hallermeier (1982); Williams and Rose 

(2001); Nielsen and Callaghan (2003); Soulsby and Damgaard (2005); Jiang et al. (2015). Due 

to the continuous response of the sediments to the wave action and currents, the shoreline in 

turn responds to these physical processes influencing the dynamic equilibrium of the beach; 

depending also on the seabed and beach material, beach morphology, coastal profile and supply 

of sediment, the shoreline may be eroded, accreted or stay in equilibrium state.  

 

Generally, sediment transport is divided into two classes: 

 longshore transport due to oblique breaking waves generated by longshore currents that 

moves the sediment parallel to the shore, and; 

 cross-shore transport that leads to the onshore or offshore net transport of sediment 

perpendicular to the shore.  

 

The accurate prediction of seabed level change relies on the accurate estimation of coastal 

sediment transport since gradients in the sediment transport rates lead to seabed topography 

changes due to erosion/accretion.  

 

 

5.3.1 Characteristics of sediment transport 
 

Focusing on the non-cohesive granular sediments in this thesis, the size of the grain is the most 

important factor for its classification, which can be expressed through statistics (e.g. mean 

value, standard deviation, skewness, kurtosis) derived from the sand size distribution 

concerning a particular sand sample or from the measured settling velocity, usually extracted 

directly from laboratory measurements. For instance, the median particle diameter 𝑑50 is a 

representative measure for sand samples, for which half of the sample contains finer particles 

compared to the other half with coarser ones. The Wentworth scale is the most popular 

classification of sediment grain by size based on powers of two (Wentworth, 1922), where sand 

ranges from 0.0625 mm to 2 mm. At this scale, there is also finer-grained sediments referred to 

as silt and clay, and coarser-grained sediments referred to as gravel (e.g. boulder, pebble). 

Additional properties include sorting (grading) and shape of grain. The factors that determine 

the size of sediments are: i) wave energy conditions; ii) sediment sources, and; iii) offshore 

slope.  

 

In both horizontal and vertical directions of a seabed, characteristics of sediment can vary 

significantly primarily due to the action of waves and currents. For instance, in the horizontal 

direction and under high wave conditions, coarse sands are encountered in shallow waters as 
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finer sediments are deposited in areas with less turbulence (e.g. deep waters) while in the 

vertical direction, coarse sediments may cover finer ones during intense storm events. Apart 

from the spatial variations, temporal variations (seasonally or over longer timescales) can also 

occur. 

 

Note that except for the hydrodynamic/wave conditions of an area and the grain diameter, the 

pattern of sediment transport is also influenced by the characteristics of the transported material, 

usually defined by grain (relative and bulk) density, porosity, fall velocity, etc. 

 

The sediment load in a coastal area can be transported in various ways depending on the bed 

shear velocity. The most commonly modelled ones are: 

 

 bed load transport 𝑞𝐵, where the value of bed shear velocity exceeds the critical value for 

initiation of movement and the sediment particles are almost continuously in contact with 

the bed during transport, and; 

 suspended load transport 𝑞𝑆, where the value of bed shear velocity exceeds the fall velocity 

of the particles leading to the lift and suspension of the grains outside the close vicinity of 

the bed due to the upward impulses carried by turbulent eddies.  

 

The accurate estimation of coastal sediment transport is not a trivial task due to the complexity 

of the environment and the interdependence of numerous coastal processes in sediment 

dynamics. In the relevant literature, there is a plethora of theories, assumptions and methods 

proposed for the study of sediment transport from empirical formulas, which are the most 

commonly implemented in modelling studies, to more sophisticated experimental techniques. 

Sediment can be transported under the action of currents, waves and their combination and its 

movement can be investigated by Lagrangian and Eulerian models; the sediment transport 

numerical model used in this thesis is based on the latter model. The most controlling factor for 

the erosion/deposition patterns is the bed shear stress; the total sediment transport, in turn, 

affects the bathymetry evolution, which results in changes in the current and wave fields. Thus, 

due to the numerous chain-dependent physical processes involved in sediment dynamics, all 

these models must be coupled.  

 

 

5.3.2 Threshold of movement  
 

The sediment movement is dependent on the equilibrium of forces, horizontal and vertical, 

coming from the water motion, neighbouring grains and hydrodynamic sub-pressure that acts 

on the surface of the sediments. When the instantaneous fluid forces are just greater than the 

resisting forces on a particle then this phenomenon is called threshold of sediment motion or 

sediment incipient motion. In order to predict sediment transport rates and morphological 

changes at a coastal location, the first step is to predict this threshold.  

 

Both theoretical and experimental studies have been performed for the incipient motion of non-

cohesive sediments. The Shields parameter 𝜃 is a non-dimensional number widely used as a 

criterion for the initiation of movement of sediment when the critical bed shear stress of the 

sediment is exceeded by the shear stress induced by the flow (Shields, 1936). The critical 

Shields parameter is defined by  

 

 𝜃𝑐𝑟 =
𝜏𝑐𝑟

𝑔(𝜌𝑠 − 𝜌)𝑑50
, (5.2) 

 

where 𝜏𝑐𝑟 is the critical value of the bed shear stress, 𝜌𝑠 is the density of the sediments and 𝜌 is 

the corresponding one for the fluid, and 𝑑50 is the median size of the sediment particle. This 

stress can be caused either by currents, waves or their combined action. 
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In case of pure current, the bed shear stress is calculated using simple drag coefficient 

expressions, which rely either on constant drag coefficients or a logarithmic velocity profile. 

The latter approach has a greater advantage over the former when morphological changes are 

considered due to the dependence on the vertical distance from the bed. For a given location at 

height 𝑧 above the boundary, the velocity is given by  

 

 𝑢(𝑧) =
𝑢∗
κ
ln (

𝑧

𝑧0
), (5.3) 

 

where 𝑢∗ = √𝜏𝑏𝑐 𝜌⁄  is the friction velocity (𝜏𝑏𝑐 is the current-produced shear stress and 𝜌 is 

the fluid density), 𝜅 is the von Kármán (typically equals to 0.41) constant and 𝑧0 is the bed 

roughness length.  

 

Under the action of pure waves, the critical conditions for sediment motion are expressed 

through the critical bed shear stress by introducing the concept a friction factor as follows 

 

 𝜏𝑏𝑤 = 0.5𝜌𝑓𝑤𝑢𝑏𝑤
2 , (5.4) 

 

where 𝑢𝑏𝑤 is the bottom (or near-bed) wave orbital velocity. The wave friction factor 𝑓𝑤 

depends on the flow regime (e.g. smooth, turbulent), which in turn depends on the wave 

Reynolds number 𝑅𝑤 and the relative roughness 𝑟 = 𝛼 𝑘𝑛⁄  (𝛼 is the wave orbital amplitude 

and 𝑘𝑛 is the Nikuradse's bed roughness parameter) of the seabed. Among the variety of 

formulations that exists for approximating 𝑓𝑤, the most commonly used explicit expressions 

have been proposed by Swart (1974); Kamphuis (1975); Nielsen (1992).  

 

The representation of bed shear stress developed under the combined action of waves and 

currents is more complex due to their non-linear interactions. In this case, usually both mean 

and maximum combined bed shear stresses need to be determined. Several approaches for the 

parameterization of wave-current interactions have been proposed; see the review of the state-

of-the-art knowledge of sediment transport caused by waves and currents by Lu et al. (2015).  

 

 

5.4 Case study 1: Modelling nearshore hydrodynamics and circulation 

under the impact of high waves at a coastal area 
 

5.4.1 Motivation 
 

The main motivation of this application is to study the effects of high waves on hydrodynamics 

and circulation on a sandy beach and, in turn, give insight into their impact on sediment 

transport processes. Because of the abundance of the available in situ measurements, Varkiza 

coast, in the Saronic Gulf (western Aegean Sea), has been selected as a suitable area for 

modelling the hydrodynamic and meteorological conditions and estimating sediment transport 

rates during and after intense sea states/storms by using a quasi-3D sediment transport model 

based on finite volume method. Specifically, Varkiza coast, located in the homonym bay, forms 

a part of the north-eastern Saronic Gulf, a semi-enclosed embayment in the south-western 

Aegean Sea; see Figure 5-1. It is limited in width and length (around 900 m), while at the east 

side of the coast there is a flume mouth that follows dry/wet epochs. Furthermore, the U-shape 

and south orientation of the examined coast confine wave action, which is the primary factor 

for the settlement of sediments. Erosion phenomena are evident due to both the intensive 

onshore development and physical conditions. The main reasons for choosing the particular 

coast, apart from the recreational and economic activities that it hosts, refer to the availability 

of the following features: 
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Figure 5-1. Aerial map of the Saronic Gulf along with the locations of the in situ devices 

(left map), and the study area of the coast of Varkiza (right map) from Google Earth. 

 in situ measurements as regards the wave parameters from two different data sources; an 

oceanographic buoy at an offshore location and an acoustic wave and current (AWAC) 

profiler at the entrance of the bay (see also Figure 5-1); 

 a detailed bathymetry up to 25 m water depth inside Varkiza Bay, which was partially based 

on seabed mapping;  

 cross-shore sections along the beach, on which seabed level was measured after intense sea 

states completing an annual cycle, as well as grain size of sediments (Foteinis, 2014; 

Skanavis, 2013), and;  

 the touristic character of the area, along with the intense socio-economic activities along the 

beach mainly during summer months, that renders the understanding and prediction of 

sediment transport phenomenon a critical task. 

 

The results from this analysis have been published in: 

Belibassakis, K., Karathanasi, F., 2017. Modelling nearshore hydrodynamics and 

circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. 

Oceanologia 59(3): 350–36.  

 

 

5.4.2 Wind and wave climatology 
 

As regards wind and wave climatology, the analysis was based on a 9-year dataset from an 

oceanographic buoy that was taken into consideration as a representative location for the 

examined area. This buoy, deployed at the southern part of the Saronikos Gulf (37.588N—

23.558E, water depth ~200 m) belongs to the POSEIDON marine monitoring network that 

operates under the responsibility of the Hellenic Centre for Marine Research (HCMR) since 

2000 (Soukissian et al., 1999). The wind measurements, with reference height 3 m above sea 

surface, have a 3-h recording interval with 1 Hz sampling frequency (averaged over a 600-

second recording period), while the wave measurements have a 3-h recording interval with 

1024 s for the sampling period of the free surface. The time series of wind speed and significant 

wave height is between 08/2007 and 05/2015.  

 

In Figure 5-2(a) and (b), the rose charts of wind speed and significant wave height are presented, 

respectively, along with the corresponding frequencies of occurrence. From the former figure, 
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it is illustrated that winds are blowing mainly from the north (sector [337.5°, 22.5°]) while, at 

the same sector, high values of wind speed are also present with the maximum one reaching 

values up to 17.3 m/s. On the other hand, for the latter figure, the prevailing wave directions 

(sectors [0°, 67.5°] and [135°, 157.5°]) correspond to the less frequent wind directions. Large 

fetches are evident from the eastern side of the location of the buoy (around 65 km) while in 

the north and south directions, wave fetch is smaller (15 km on the average). Waves propagating 

from the west have very low frequency of occurrence, which is reflected also by the very small 

fetch. Low values of significant wave height (up to 0.5 m) have very high frequency of 

occurrence (4–5%) coming from the east, while waves characterized with the highest values of 

the same parameter (up to 3.1 m) propagate from the south-east, attributed to the very large 

fetch (115 km). Furthermore, note that the scattering of wind directions is broader compared to 

the wave directions.  

 

As regards water circulation, in Kontoyiannis (2010) direct current observations were analysed 

at three different time periods and it was concluded that the seasonal flows at the north-eastern 

part of the Gulf have a northward meandering when north-western, western and southern winds 

are blowing. Furthermore, the circulation pattern is characterized by a two-layer structure 

(cyclonic in the upper layer and anticyclonic in the lower layer) from late spring to summer to 

late fall. In the same work, the time series of current velocity for a 3-month period (11/2003–

01/2004) indicated that the currents are in the mean rather weak. 

 

(a) 

 

(b) 

Figure 5-2. Rose diagram of (a) wind speed and wind direction, and (b) significant wave 

height and wave direction at the buoy location for the period 2007—2015. 

 

 

5.4.3 Model domain and bathymetric data 
 

In order to manage the computational domain and economize on computation time, the model 

domain was sectioned into six nested rectangles, going gradually from the outer area (i.e. level 

1) up to the entrance of Varkiza Bay (i.e. level 6); see also Figure 5-3(b) for the representation 

of the different levels. The outer area covers a surface of 45 km x 76 km and the area of Varkiza 

Bay equals to 2 km x 2.5 km.  

 

In order to determine the variability of flow characteristics in space, model grid resolution is a 

key factor that affects the quality of the obtained results. The provision of flexible mesh in 

MIKE21 results to a more accurate representation of the area under study, with the choice of 

finer mesh elements at local areas of special interest. In this study, various mesh areas were 
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applied to discretise the water surface, with small triangular elements representing areas where 

the accuracy in the calculations was important. The final mesh area of the examined area is 

presented in Figure 5-3(b). The bathymetric information that is necessary for constructing the 

mesh area for the entire area was obtained by the Hellenic Navy Hydrographic Service (HNHS) 

from maps of different spatial scales. The bathymetric grid data for the last level (of a 5-m 

spatial resolution) was obtained by combining a high-resolution map from the HNHS and field 

measurements provided by the HCMR. In Figure 5-3(a), the 2D bathymetric representation of 

the examined area is displayed in Google Earth; the deepest water depth is close to 800 m at 

the south-eastern boundary of the study area. 

 

 

5.4.4 Input data 
 

The period of the simulation, extending from January 3 to February 19, 2013, was selected so 

as to include a sequence of extreme events with significant wave heights higher than 2.5 m that 

were recorded at the entrance of the bay during this period. Furthermore, bathymetry resolution 

(including flexible mesh) and time step for computations of the HD and SW results are key 

parameters for the purpose of this study. As concerns the mesh, it becomes progressively finer 

as we move from level 1 to level 6, which is the local domain at the coastal site of Varkiza. The 

total number of elements in the whole domain is 12,176, the corresponding number of elements 

in level 6 is 1600, and the time step is set to Δt = 1800 s. The latter are found to be enough for 

numerical convergence of the results concerning the wave quantities that are presented in more 

detail below. Specifically, numerical investigation shows that the calculated results do not 

change more than 5% with further enhancement of the mesh at the different subdomains and 

reduction of the time step.  

 

 

(a) 

 

(b) 

Figure 5-3. (a) The model domain showing the bathymetry of the examined area and (b) the 

mesh grid for the adopted levels. 
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The necessary input data for the HD module include the following parameters: wind forcing, 

radiation stress fields, boundary conditions, atmospheric pressure, bed resistance and eddy 

viscosity. Eddy viscosity was obtained in the domain from the Smagorinsky formulation with 

a constant coefficient (equal to 0.28), bed resistance (defined by the Manning number) was only 

varying at level 6 (with values between 10 and 32 m1/3/s), where sediment transport rate is of 

interest, while salinity and temperature were constant during the simulation (barotropic mode). 

Regarding boundary conditions, normal fluxes were forced to zero for all variables along both 

closed and open boundaries, assuming full slip boundary conditions, since all boundaries are 

far from the area of interest and tidal heights are rather small and do not impact the simulation 

results. Let us note that tidal heights, predicted from the Global Tide Model Data, were also 

used as an alternative input for the open boundaries; however, the simulation results were 

similar to the ones presented in this work.  

 

The effect of the wind forcing on the flow field is included by considering wind speed and wind 

direction; in this way, wind shear stress is calculated on the water surface. For the numerical 

simulations, these two variables were considered to be varying in time but constant in domain. 

Wind speed and direction were obtained by the results of the POSEIDON II weather forecasting 

system (Korres et al., 2010) that has been developed in the framework of the POSEIDON-II 

project8 (2005–2008). 

 

As regards the SW module, the corresponding conditions at the offshore (south) open boundary 

were varying in space (along the wave generation line) and time. The corresponding input was 

based on the WAM Cycle-4 code, a third generation wave model, which computes spectra of 

random short-crested wind-generated waves. The spatial resolution is 1/30° x 1/30° (~3 km) 

resolving the wave spectrum at each grid point in 24 directional and 30 frequency bins. The 

wave parameters that were obtained are the significant wave height 𝐻𝑚0
, the peak wave period 

𝑇𝑃, the mean wave direction 𝜃𝑤𝑎𝑣𝑒 and directional spreading 𝑛. The zero upcrossing period 𝑇𝑧, 

obtained from the WAM model, was converted to the peak wave period 𝑇𝑃 by using the 

following approximate relation (DNV, 2011): 

 

 
𝑇𝑧

𝑇𝑃
= 0.6673 + 0.05037𝛾 − 0.006230𝛾2 + 0.0003341𝛾3, (5.5) 

 

where 𝛾 is the peak enhancement factor of the spectrum. Assuming a JONSWAP spectrum with 

𝛾 = 3.3, Eq.(5.5) results in 𝑇𝑃 = 1.2859𝑇𝑧. 
 

Other key parameters or coefficients for setting SW module are: 

 energy transfer, where quadruplet-wave interaction was considered; 

 wave breaking was included by specifying the gamma parameter 𝛾𝑤𝑏 (constant in domain, 

equal to 0.8); 

 bottom friction, specified by the Nikurdase roughness 𝑘𝑁 (constant in domain, equal to 0.04 

m); 

 white capping, specified by the two dissipation coefficients (constant in domain) 𝐶𝑑𝑖𝑠, which 

controls the overall dissipation rate (set to 4.0), and 𝐷𝐸𝐿𝑇𝐴𝑑𝑖𝑠, which controls the weight 

of the dissipation in the energy spectrum (set to 1.0).  

 

Both wind and wave data were derived from the POSEIDON Live Access Server (LAS, 

http://poseidon.hcmr.gr/listview.php?id=17), which is a gateway to archived model results, 

dating from December 1, 2012 to June 30, 2013 with a 6-h time resolution for both datasets. 

Missing data were filled in by linear interpolation to allow the execution of the simulation; 

however, interpretation of the simulation results during these time periods should be avoided.  

                                                      
8 The POSEIDON-II weather forecasting system is operational since December 2007 and is applied on a 

horizontal resolution of 1/20° x 1/20° (~5 km) over the domain covering the whole Mediterranean and 

Black Sea regions and the surrounding countries. 
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Finally, regarding the setting up of the ST module, the transport tables have a key role; these 

tables are built based on all possible combinations according to the specified intervals of the 

involved parameters (i.e. the root-mean square wave height, peak period, current speed, wave 

height-to-water depth ratio, angle between current and waves, median grain diameter 
50d  and 

sediment grading). Additional parameters that are important for this module are forcing from 

the wave and current action, provided by the HD and SW simulations (see below Figure 5-4 

and Figure 5-5, respectively), sediment properties, time step factor (set to 5, i.e. estimation of 

seabed level and sediment transport every 5th HD time step) and settings for the morphological 

changes and boundary conditions of the area of interest. In particular, based on measured data, 

the spatial distribution of the grain diameter of the sediment (𝑑50) over the coastal zone of 

Varkiza Bay was set to 2 mm for water depths greater than 20 m (where no significant sediment 

transport is expected). Moreover, in depths less than 3 m there is a gradual increase of d50 from 

0.1 mm to 0.4 mm in the S-N direction (moving towards the shoreline), and a variation from 

0.35 mm to 0.45 mm in the E-W direction on the shore. Sediment grading was kept constant 

(equal to 1.45) for the same level. 

 

 

5.4.5 Model calibration and validation 
 

Model calibration is necessary in order to adjust and improve the agreement between the results 

of the model simulations and a chosen set of benchmarks (Trucano et al., 2006); in this study, 

benchmark is a data set obtained by in situ measuring devices, which are considered to be the 

most accurate data sources. On the other hand, validation is the process of verifying that the 

predictions from the model are consistent with the examined physical events after calibrating 

the involved parameters or coefficients. Let us note that the data used for the validation should 

be different from the data used during the calibration phase.  

 

There are numerous parameters and coefficients that should be set so that the model predicts 

reasonable results; for instance, in the case of the SW model, the parameters that influence the 

model results regarding the fully spectral formulation and should be adjusted are 𝐶𝑑𝑖𝑠 and 

𝐷𝐸𝐿𝑇𝐴𝑑𝑖𝑠 dissipation coefficients, gamma and alpha parameters of wave breaking and bottom 

roughness.  

 

The wave parameters that were used to validate the model were the significant wave height, the 

zero-crossing wave period and the mean wave direction at the locations where in situ 

measurements were available; two different sources of such measurements were accessible, an 

AWAC profiler at the entrance of the examined bay and an oceanographic buoy at an offshore 

location. The latter data source was used to calibrate the wave data input at the offshore 

boundary of the model domain, where wave data from the WAM model were available, by 

applying the calibration methods described in Section 2.4.4. Let us remark that in the calibration 

procedure, more emphasis is given to the significant wave height, since highest waves are 

expected to have major contribution to the movement of sediments during storm events. For the 

model assessment, the following statistical measures were applied: RMSE and MAE were used 

for the linear variables (i.e. significant wave height and wave period) and MCAE and RME for 

the directional ones (i.e. wave direction); for the corresponding definitions, see Appendix B.4. 

The validations against both sources of in situ measurements showed that there is a good 

agreement as regards significant wave height and mean wave direction, but wave period 

exhibits a less accurate performance. 

 

 

5.4.6 Simulation results 
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The following results represent the current and wave characteristics and bottom morphology of 

the examined area for the “extreme” event that occurred on January 18, 2013. The time series 

of wind speed, wind direction and significant wave height used as input at the offshore boundary 

are presented. It is evident that southern winds generate the highest values of significant wave 

height during the simulation period. Moreover, wave height variation is found to be in good 

agreement with wind speed data, denoting that the waves at this location are mostly wind 

generated. 

 

HD results 

 

The spatial distribution of current speed and the corresponding direction for the entire area and 

the coast of interest is depicted in Figure 5-4 during a specific extreme event (on January 18, 

2013) that was characterized mainly by south wind and wave directions. The model domain is 

characterized by low current speeds, of the order of 0.2 m/s. As regards Varkiza Bay, highest 

values of current speed are observed; locally (at the east side of the bay) current speed reach 

values up to 0.9 m/s, which is an extreme value encountered very locally during the peak of the 

storm. The latter high values may be also attributed to the wave direction and the orientation of 

the coastline. Moreover, in Figure 5-4(b) a counter-clockwise current circulation is evident 

during this extreme event due to the concave and curvilinear shoreline structure of Varkiza 

coast and the relatively deep water depths that enhance penetration of waves and currents from 

easterly sectors. The combination of the above factors produces offshore currents near the 

western part of the study area. From the analysis, it seems that tidal currents might be of 

secondary importance in the context of coastal erosion. 

 

SW results 

 

In Figure 5-5, the spatial distribution of the significant wave height and mean wave direction is 

presented over the model domain. The analysis of the results shows that the significant wave 

height is reduced as the waves propagate towards the shallower water depths of Varkiza beach; 

see also Figure 5-5(b). Near the coast the wave height is lower than 2 m with a mean wave 

period around 7 s (not shown here). 

 

 

(a) (b) 

Figure 5-4. Spatial distribution of (a) current speed and current direction for the entire 

model domain and (b) for Varkiza bay at a specific time step of the simulation. 
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(a) (b) 

Figure 5-5. Spatial distribution of (a) significant wave height for the entire model domain 

and (b) for Varkiza bay at a specific time step of the simulation. 

 

ST results 

 

In Figure 5-6(a), the spatial distribution of the seabed level change at the specific time step is 

presented. Based on the simulation results, negative seabed level changes (up to -0.3 m) are 

observed along the coastline of the examined beach, while off the coast of Varkiza the 

corresponding seabed level changes are relatively smaller. Positive seabed level changes are 

depicted mainly along the east side of Varkiza Bay that may be attributed to the high values of 

current speed.  

 

In Figure 5-6(b), the total load of sand transport is presented, along with the corresponding 

direction, for the examined extreme event. The highest values of sand transport (up to 0.00098 

m3/(s m)) are depicted mainly at the 4-m isobath at the central and eastern side of the beach, 

denoting erosion trend at a larger spatial scale compared to the west side. In the western part of 

the beach, at a zone of 150 m width from the coastline, accretion patterns are encountered while 

the rest zone is characterized by erosion. The same behaviour was revealed and discussed in 

the study of Skanavis (2013), where cross-shore profiles were obtained from a topographical 

survey by using RTK-GPS, and six sections (section A to F going from east to west, 

respectively) were presented along Varkiza beach before and after extreme events. In this work, 

three out of six cross-shore profiles, shown in Figure 5-7(a), are examined with reference to the 

period from January 5 to February 18, 2013.  

 

In Figure 5-7, the seabed level change at the cross-shore sections (A, C, E) between the two 

examined dates (close to the beginning and end of the simulation period) is plotted, along with 

the initial section bathymetry. The changes calculated by the model are shown by using solid 

lines and the measured data by using symbols. It is revealed that at all the examined sections 

there is a clear erosional trend alongshore apart from the field measurements at section E, where 

accretion is observed for a distance approximately 15 m from the shoreline. 
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(a) (b) 

Figure 5-6. Spatial distribution of (a) seabed level change and (b) total magnitude of 

sediment transport for Varkiza bay at a specific time step of the simulation. 

 

 

5.4.7 Discussion 
 

Over the last 50 years, the human activities taken place in Varkiza, such as the construction of 

a high-traffic coastal avenue parallel to the beach at a distance about 180 m, and marine 

structures for mooring small boats and the needs of the local fishery community at the west side 

of the coast, have disturbed gradually the natural equilibrium between coastal hydrodynamics 

and sediment transport processes, and coastal configuration as well.  

 

Based on the main findings of this study and the overview of the hydrodynamic conditions and 

wave climate of the beach, coastal protection measures and mitigation methods for coastal 

erosion at the examined area can be roughly suggested. As was stated by Bergillos et al. (2017), 

sustainable and economical interventions are preferred for coastal erosion problems; such 

countermeasures include, among others, beach nourishment (or beach fill), artificial reefs and 

coral transplantation known as soft engineering methods while breakwaters and other 

engineering structures belong to the hard engineering measures (Luo et al., 2016). The 

implementation of the former measures is also enhanced by the topography of Varkiza beach, 

since pocket beaches suffer less from lateral volumetric losses compared to open and extensive 

sandy beaches.  

 

Whichever countermeasures will be adopted by the collaboration of coastal managers, 

scientists, decision makers and local authorities for the sustainable development and effective 

management of this coastal zone, previous extended video monitoring of the beach conditions, 

including periodically updated bathymetric data, is suggested. Furthermore, advanced local-

scale shoreline evolution models, as e.g. UNIBEST 

(https://www.deltares.nl/en/software/unibest-cl/#8), requiring quite more detailed 

sedimentological information, allow for precise quantification of the sediment transport rates 

close to the shoreline. 
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(a) 

 

(b) 

Figure 5-7. (a) Locations of cross-shore sections at Varkiza beach (from Google Earth) 

and (b) seabed level differences along the cross-shore sections A, C, E between January 5 

and February 18, 2013 obtained from the model simulation and field data. 

 

 

5.5 Case study 2: Sediment transport simulation based on the influence of 

cumulative wave action at a sandy beach 
 

5.5.1 Motivation 
 

In order to reduce computational time that is required for simulations of morphological models 

with time period of one year or greater, but retaining an acceptable accuracy of the predictions, 

wave input reduction methods have been suggested. The core idea of these techniques is to 

reduce the size of the wave input data at a coastal area of interest with some sets of 

representative wave conditions based on specific criteria. 
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In this section, a cost-effective method is introduced based on the use of process-based models 

combined with the philosophy of wave input reduction techniques. The proposed technique 

relies wave input reduction on a grain motion initiation criterion in terms of orbital velocity, 

from which two basic categories are separated: (i) the one dealing with wave conditions that 

contribute to the wave-induced initiation of sediment movement at depths around the closure 

depth, and (ii) the other one including the low energetic wave conditions. Other reference works 

as regards the onset of sediment motion under waves are those of Hallermeier (1980); Soulsby 

(1997); Van Rijn (1993). Consequently, the computational efficiency of estimating seabed level 

can be drastically increased with the proposed methodology instead of using the full wave time 

series, while the accuracy level can be retained into acceptable limits. 

 

As an application the coast of Sitia, in the eastern part of Crete Isl., is examined as a specific 

case study. The main reasons for selecting this particular coast lie in its vulnerability to erosion 

phenomena and its touristic character. In Foteinis and Synolakis (2015), the mean coastal retreat 

rate at Sitia was estimated at 0.32 m/yr, among the highest erosion rates in Crete, utilizing aerial 

photographs (1960–2004), satellite images (2003–2012) and field survey measurements (2009–

2012). In 2016, the collapse of the retaining wall of the coastal road brought the erosion matter 

to a climax leaving some villages in the north-eastern part inaccessible until the end of repair 

works. However, from Google Earth images, it seems that in 2017 there was a widening along 

the beach, which can be attributed to natural processes since no beach nourishment took place. 

Additionally, the touristic activities in the wider area have become more intensive the last years 

rendering confronting, prediction and management of erosion even more imperative. A 

preliminary study as regards the sediment transport patterns under two alternative wave 

scenarios (i.e. mean sea state, harsh wave conditions that contribute to initiation of sediment 

motion) and three different topographies of the seabed (i.e. current state, two submerged 

breakwaters at the isobaths of 5 m, port extension in the sea) has been conducted by the same 

authors at the same study area (Karathanasi et al., 2017). One of the main conclusions of this 

study as regards the harsh wave conditions for all the examined seabed topographies was the 

clockwise current circulation that contributed to the sediment movement westward. 

 

The results from this analysis have been published in: 

Karathanasi, F., Belibassakis, K., 2019. A cost-effective method for estimating long-term 

effects of waves on beach erosion with application to Sitia bay, Crete. Oceanologia 61(2): 

276–290.  

 

 

5.5.2 Methodology 
 

When a long-term time series of wave data is available near-shore, the core of the proposed 

methodology is based on the rationale of wave input reduction. The wave conditions that 

contribute to the onset of sediment motion below the closure depth of a sandy seabed level, 

called hereafter “over-critical wave conditions”, form the determinative factor of this analysis. 

With the term “closure depth” is defined the transition zone in which the influence of waves on 

bed stresses, and hence sediment transport, is significantly lower than within the region of wave 

breaking (i.e. surf zone) or the region where the effects of wave energy dissipation are dominant 

(i.e. upper shoreface zone) (Ortiz and Ashton, 2016). Hence the underlying assumption as 

regards closure depth is its dependence on the harsh wave conditions. In this context, it is 

possible to significantly reduce computation times and speed up the whole analysis. The 

proposed approach uses the wave statistical parameters such as significant wave height 𝐻𝑆 and 

peak period 𝑇𝑃, along with some basic hydrodynamic parameters (e.g. wave height, sea water 

density) and sediment characteristics (e.g. 𝑑50, density of sediment), to estimate bottom orbital 

velocity 𝑢𝑏 and wave shear velocity 𝑢∗𝑤, rendering the methodology fully applicable and 

handy, since in the majority of the cases such summary data are available (e.g. wave model 

outputs, archived wave data). 
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Before proceeding with the description of the methodology, for the sake of simplicity, let us 

first provide the appropriate definitions regarding the points used in the analysis that are 

mentioned in the subsequent sections: 

 

 the offshore points that correspond to the available wave time series, forming the input for 

the boundary of the outer model domain with the coarse spatial resolution, are denoted by 

Pout; 

 the points that are used as input for the boundaries of the inner model domain with the fine 

spatial resolution, obtained after applying a wave transformation scheme, are denoted by 

Pinn, and the middle point of the northern boundary is denoted by Pinn,m; 

 the point that represents the closure depth is denoted by Pcd, and the corresponding depth hcd 

is defined by the Hallermeier (1981) equation given by: 

 

 hcd = 2.28𝐻eff − 68.5(
𝐻eff
2

𝑔𝑇eff
2 ), (5.6) 

 

where 𝐻eff is the effective wave height, exceeded 12 h in a single year (i.e. the greatest 0.137% 

waves during a year) and 𝑇eff is the associated wave period.  

 

 

Description of the cost-effective method 

 

According to linear wave theory, the bottom (or near-bed) orbital velocity of a monochromatic 

wave is related to water depth and surface wave conditions as follows: 

 

 𝑢𝑏 =
𝜋𝐻

𝑇sinh(𝑘ℎ)
, (5.7) 

 

where 𝐻 is the wave height, 𝑇 is the wave period and 𝑘 = 2𝜋 𝜆⁄  is the wavenumber (𝜆 is the 

wavelength) and ℎ is the water depth. Eq. (5.7) is extended for multichromatic waves in the 

coastal environment by applying it for all frequencies of the wave spectrum corresponding to 

each sea state and summing the components. Thus, a representative bottom orbital velocity 𝑢𝑏𝑟 

is calculated; see, e.g. Madsen (1994). Following the method suggested by Wiberg and 

Sherwood (2008) a generic form of the wave spectrum is used to estimate bottom orbital 

velocity from the values of 
SH  and 

PT  of the reference wave data (i.e. the entire time series of 

the available wave data) at a point that represents the closure depth, denoted by Pcd. Among the 

commonly used wind-generated wave spectra, JONSWAP spectrum (Hasselmann et al., 1973) 

is adopted 

 

 𝑆𝜂(𝜔) = B(
𝐻𝑆
4
)
2𝜔𝑝

4

𝜔5
exp [−

5

4
(
𝜔

𝜔𝑃
)
−4

] 𝛾𝜙(𝜔 𝜔𝑃⁄ ), (5.8) 

 

where 𝜔𝑃 = 2𝜋 𝑇𝑃⁄  is the peak angular frequency, B = 3.29, 𝛾 = 3.3 and 𝜙(𝜔 𝜔𝑃⁄ ) =
exp[−0.5𝛽−2(𝜔 𝜔𝑃⁄ − 1)2] with 𝛽 = 0.07 for 𝜔 ≤ 𝜔𝑃 and 𝛽 = 0.09 for 𝜔 > 𝜔𝑃.  

 

The representative orbital velocity 
bru  is then calculated from the following relation 

 

 𝑢𝑏𝑟 = √2(∑𝑆𝑢,𝑖Δ𝜔𝑖
𝑖

), (5.9) 

 

with 𝑆𝑢,𝑖 =
4𝜋2

𝑇𝑖
2sinh2(𝑘𝑖ℎ)

𝑆𝜂,𝑖. 
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For the sediment transport purposes, another important property of waves is the bed shear stress 

𝜏𝑏𝑤 that can be associated with 𝑢𝑏 and a wave friction factor 𝑓𝑤 by Eq. (5.4). In this study, the 

friction factor is calculated by the following empirical relationship 

 

 𝑓𝑤 =

{
 
 

 
 0.04 (

𝛼

𝑘𝑁
)
−0.25

,
𝛼

𝑘𝑁
> 50

0.4 (
𝛼

𝑘𝑁
)
−0.75

  ,
𝛼

𝑘𝑁
< 50,

 (5.10) 

 

where 𝛼 = 0.5𝐻 sinh(𝑘ℎ)⁄  is the wave orbital amplitude and 𝑘𝑁 is the Nikuradse's bed 

roughness parameter equal to 2.5𝑑50. 

 

Wave shear velocity 𝑢∗𝑤 is defined as follows: 

 

 𝑢∗𝑤 = √
𝜏𝑏𝑤
𝜌𝑤
. (5.11) 

 

The dimensionless bed shear stress, i.e. the Shields parameter 𝜃∗, defined as: 

 

 𝜃∗ =
𝑢∗𝑤
2

(𝑠 − 1)𝑔𝑑50
, (5.12) 

 

with 𝑢∗𝑤
2 = 0.5𝑓𝑤𝑢𝑏𝑤

2  (where maximum orbital velocity is calculated using the significant 

wave height), 𝑠 = 𝜌𝑠 𝜌𝑤⁄  denoting the ratio between the density of bed material and sea water 

(𝜌𝑠 is the density of the sediment) and 𝑔 denoting the acceleration caused by gravity (9.81 m/s2), 

is used to indicate the lower threshold value for initiation of sediment motion for the cases that 

𝜃∗ > 𝜃cr, where 𝜃𝑐𝑟 = 0.045 isthe critical bed shear stress.  

 

Based on the above threshold value of initiation of sediment movement, the proposed 

methodology can be applied on the available wave time series at Pcd in order to indicate the 

specific timesteps that represent these wave conditions yielding a value of 𝜃∗ higher than 0.045 

(i.e. over-critical wave conditions). Let us note that in case the available wave time series is 

available at an offshore location, like Pout points, a wave transformation process should be 

necessarily implemented in order to obtain the corresponding time series at the closure depth. 

Having these over-critical wave conditions at Pcd to hand, the corresponding conditions at the 

boundary of the inner model need to be extracted, represented by Pinn,m. Since the temporal 

resolution of the wave time series is 1 hour and given the distance between the offshore 

boundary (of the inner model) and Pcd (~1.6 km), the over-critical wave conditions at the 

boundary of the inner model that contribute to the initiation of sediment motion are identified 

based on the same timestep that gives each over-critical wave condition at Pcd. Then, these over-

critical conditions are classified at Pinn,m into specific intervals of 𝐻𝑆 and 𝑇𝑃 (0.5 m and 1 s, 

respectively) with equidistant binning (i.e. constant bin-size) and the corresponding mean wave 

direction um is calculated for each class. This schematization (into (𝐻𝑆, 𝑇𝑃 , 𝜃𝑚) triplets) is 

essential in order to proceed with the proposed methodology described in detail in the remaining 

part of this section. 

 

Apart from the over-critical wave conditions, in which the morphological changes are large, the 

conditions where wave-induced currents are dominant should be additionally considered for a 

more realistic long-term behaviour of seabed level. Assuming that waves below 0.5 m at the 

boundary of the inner model do not produce significant erosion/accretion patterns in the shore, 

the calm wave climate, called hereafter “sub-critical wave conditions”, is grossly classified for 

values of 𝐻𝑆 smaller than the threshold values and higher than 0.5 m. In this case, the intervals 
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for 𝐻𝑆 remain 0.5 m and for 𝑇𝑃 the interval is varying (from 1 s to 4 s). The corresponding mean 

wave directions 𝜃𝑚 for the selected pairs (𝐻𝑆, 𝑇𝑃) is also calculated. 

 

The final triplets of both the over- and sub-critical wave conditions comprise the input for 

MIKE 21 Coupled Model Flexible Mesh (called hereafter MIKE21 CFM) simulations, which 

is the process-based model used in this work; see also Sections 5.5.4 and 5.5.5. From these 

simulations the rate of seabed level change 𝑞 is extracted for a 2-week simulation period with 

1-hour timestep. This time period allows a detailed sediment response for the specific triplets 

and a more accurate estimation of a mean rate 𝑞. Let us note that the rates estimated for the 

over- and sub-critical wave conditions are appropriately weighted based on the frequency of 

occurrence of each selected class. 

 

After the schematization of the over- and sub-critical wave conditions, from the simulation 

results, the rate of seabed level change is estimated based on the sediment continuity equation. 

The mean rate of seabed level change 𝑞 [m/day] for each triplet is calculated by 

 

 �̅� =
∑ 𝑞𝑖
𝑛
𝑖=2

𝑛 − 1
, (5.13) 

 

where 𝑛 is the total number of timesteps during the 2-week simulation period. The rate of the 

first timestep 𝑞1 is considered as an initialization rate of the simulations and for this reason, it 

is excluded from Eq. (5.13).  

 

For the proposed methodology, the seabed level is estimated by 

 

 ℎ(𝑗𝑡) = ℎ(𝑗𝑡 − 1) + �̅�, 𝑗 = 1,… , 𝑛, (5.14) 

 

at the 𝑡 −th 1-hour interval for each (𝐻𝑆, 𝑇𝑃 , 𝜃𝑚) triplet. 

 

Based on the above mentioned description and definitions, the frame of the cost-effective 

methodology is presented in Figure 5-8. Recapitulating the steps that should be followed for 

implementing the proposed methodology, the following key-aspects should be addressed: 

 

1. Obtain wave time series at Pinn points and Pcd, if wave data are only available offshore; 

2. Calculate bottom orbital velocity, wave shear velocity and bed shear stress at Pcd; 

3. If 𝜃∗ > 𝜃𝑐𝑟 at Pcd, then identify the corresponding values of 𝐻𝑆 and 𝑇𝑃 at Pcd. Based on the 

timestep of each pair, extract the corresponding over-critical values of (𝐻𝑆, 𝑇𝑃) at Pinn.m. 

Then, group these pairs and calculate mean value of 𝜃𝑚 for each class; 

4. If 𝜃∗ ≤ 𝜃𝑐𝑟 at Pcd, then identify these values of 𝐻𝑆 that are both higher than 0.5 m and 

different from the over-critical values (from step 3) along with the corresponding values 

of 𝑇𝑃. Then, group these pairs and calculate mean value of 𝜃𝑚 for each class; 

5. Calculate the rates of seabed level change with MIKE21 CFM for both over- and sub-

critical values for each (𝐻𝑆, 𝑇𝑃 , 𝜃𝑚) triplet; 

6. Finally, calculate seabed level at any location of the inner model domain via Eq. (5.14). 

 

 

5.5.3 Case study 
 

The area of interest is Sitia beach that is located in the north-eastern part of the Prefecture of 

Lassithi, Crete, on the west side of the homonymous bay; see Figure 5-9. It is a 2-km long beach 

with variable width of maximum value around 35 m, and exhibits a typical U-shape in the NW-

SE orientation. Due to the shape and orientation of the examined beach, the wave action is 

confined to the north and north-eastern directions, which is the primary factor for the settlement 

of sediments. At the western part of the beach there is a river system (Pantelis -or Stomios- 
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river), following dry and wet periods, that discharges into the bay, and there is also the 

homonymous port that can accommodate both small fishing vessels and larger merchant and 

passenger vessels. 

 

 

Figure 5-8. Flow chart of the proposed methodology.  

 

Figure 5-9 also presents an overview of the points mentioned in Section 5.5.2 for the case study 

of this work. In this case study hcd = 6.5 m, thus Pcd was selected on the isobath of 6.5 m and 

in the middle of the longshore direction of the beach. 

 

The homonym town, Sitia, has become a tourist attraction the last decades, mainly during the 

summer period, while tourist infrastructures (e.g. hotels, restaurants), and in general, human 

activities, place pressure on the coastal environment. Moreover, the main road that connects 

Sitia with other tourist destinations at the eastern part of the island, such as the palm forest Vai, 

was developed to a great extent beside the coastal front.  

 

To this end, erosion phenomena are evident due to both the intensive residential and 

infrastructure-based development of the wider area along with the physical conditions that seem 

to be more frequent and of longer duration. Specifically, at the end of 2016 the front of the 

coastal road that is contiguous to the eastern part of the beach collapsed after the accumulative 

action of intense weather conditions that took place the last few years, causing several problems 

and safety issues to the local residents and tourists. Moreover, the sediment supply of the beach 

is relatively limited while the construction of the adjacent harbour at the western part of the 

coast, in order to serve the needs for tourism and fishing, puts additional pressures and 

intensifies erosion rates. 



Case study 2: Sediment transport simulation based on the influence of cumulative wave action 

at a sandy beach 

146 

 

Figure 5-9. Aerial map of Sitia bay along with the offshore locations of the input data for 

the outer model domain (left map), and the study area of Sitia beach (inner model domain) 

along with the locations of Pinn,m and Pcd (right map) used in the analysis. (Source: Google 

Earth) 

 

 

5.5.4 Model setup 
 

As mentioned above, the process-based numerical model that is used in this study is MIKE21 

CFM developed by the Danish Hydraulic Institute (DHI). MIKE21 CFM is a depth-averaged 

two-dimensional numerical model used to study and simulate a wide range of coastal 

hydrodynamic problems including the description and interaction of the relevant processes, 

such as currents, waves and sediment transport in coastal areas, among others. This numerical 

modelling software package includes several interrelated modules, of which the following are 

used for the purpose of this study: (i) the hydrodynamic (HD) module; (ii) the spectral wave 

(SW) module, and; (iii) the sand transport (ST) module. Through a dynamic coupling, 

hydrodynamic and spectral wave computations are performed simultaneously to calculate 

sediment transport rates and update bathymetry at each timestep. Specifically, sediment 

modelling is established on: (i) a depth-averaged hydrodynamic model, based on the depth-

integrated incompressible Reynolds averaged Navier-Stokes equations; (ii) a phase-averaged 

wave model, based on the wave action conservation equation, and; (iii) sediment transport 

tables calculated in advance for every combination of current, wave, bathymetry and sediment 

conditions appearing in the simulation; for a more detailed description of the three modules, 

see Belibassakis and Karathanasi (2017).  

 

In the following subsections, the boundary conditions and the model parameters used for the 

model simulations are described for each module, along with some necessary information as 

regards the model grid and wave climate. 

 

 

Bathymetry and unstructured grid 

 

As already mentioned, in this analysis, the outer model domain is used for the transformation 

of the wave conditions from the available wave time series towards the shore. This model 

domain covers a distance of 7.5 km in the longshore direction and 7.8 km for the cross-shore 

one. The total number of triangular elements in the outer domain is 1,284 with 759 nodes while 
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the maximum size of the elements is approximately 0.12 km2; see also Figure 5-10(a). The 

bathymetry of the outer model domain presented in Figure 5-10(b), shows that the seabed 

topography is quite mild. From the shoreline up to the isobath of −75 m, the contours are parallel 

and the maximum depth (−226 m) is observed at the north-western part of the domain. 

 

 

Figure 5-10. (a) Mesh with triangles for the outer model. (b) The bathymetry of the outer 

model domain. 

As regards the inner model domain, it is divided into two nested grid domains, going gradually 

from the outer area with the lower resolution (i.e. level 1) up to the computational grid with the 

highest resolution (i.e. level 2), where the smaller triangular elements represent areas where the 

accuracy in the wave, current and sediment transport calculations are important; see also Figure 

5-11(a) for the representation of the different levels and the final mesh generation of the 

examined area. Specifically, level 1 extends both in the longshore and cross-shore directions 

approximately 1.7 km with the area of each triangular element not exceeding 6,580 m2. Let us 

note in advance that the appropriate forces are imposed at the boundaries of the outmost level 

(i.e. level 1) for the generation of flow and wave conditions, which in turn define the 

corresponding boundary conditions of the inmost level (i.e. level 2). The second, and more 

detailed, computational grid (level 2) extends in the longshore and cross-shore directions 1,400 

m and 140 m, respectively, with maximum area of each triangular cell up to 1,050 m2. The total 

number of grid cells in the inner domain is 2,135 with 1,282 nodes. 

 

The bathymetry data of the inner model domain were digitized from maps of different spatial 

scales obtained from the Hellenic Navy Hydrographic Service (HNHS). The above data were 

enriched for the outer model domain with bathymetric grid points from the European Marine 

Observation and Data Network (EMODnet) Digital Bathymetry database with 1/8 of an arc 

minute (~230 m) resolution (Marine Information Service, 2016).  

 

In Figure 5-11(b), the 2D bathymetric representation of the study area is displayed in Google 

Earth for levels 1 and 2. The isobaths from −20 m to lower depths are generally parallel to the 

shoreline and are evenly flattened going from the offshore part towards the shore. The highest 

depth (close to −50 m) is encountered in the north-western part of level 1 while the 10-m isobath 

is about 410 m from the coastline. In the eastern part of Sitia beach, there are beachrocks aligned 

parallel to the shoreline starting approximately from −1.5 m depth and ending to the coast. The 

formations act as natural submerged breakwaters mitigating erosion phenomena at this part of 

the coast. 
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Figure 5-11. (a) Mesh with triangles using two levels for the inner model domain. (b) The 

inner model domain showing the bathymetry of the examined area. 

 

 

Wave conditions 

 

As regards the wave characteristics of the wider study area, the analysis relies on 1-year time 

series, between 01/01/2016 and 31/12/2016, at the middle point of the boundary of the outer 

model, i.e. at Pout2 (see also Figure 5-9, left map), with geographical coordinates 35.271°N–

26.125°E, obtained from the Mediterranean Sea Waves database. The relevant information 

include significant wave height 𝐻𝑆, peak wave period 𝑇𝑃 and mean wave direction 𝜃𝑚 

(measured clockwise from north), with an 1-hour resolution. These time series were used as 

input for the wave propagation from the offshore to the near-shore using MIKE21 CFM (SW 

and HD modules). After this simulation, the spectral time series were extracted for the northern 

and eastern boundaries of the inner model domain (with the finest triangular elements), 

presented in the right map of Figure 5-9, in order to be used as input for the rest simulations. 

 

The basic statistical measures at Pout2 include mean value (m), standard deviation (sd), 

minimum (min) and maximum (max) values, 50th percentile (p50), skewness (sk) and kurtosis 

(ku), and the results are presented in Table 5-1. On average, the wave intensity is characterized 

low with mean values 𝑚𝐻𝑆 = 0.9 m, 𝑚𝑇𝑃 = 5.08 s and 𝑚𝜃𝑚 = 394.1°. The most intense wave 

incident occurred on 6th February, 2016 with 𝐻𝑆 = 4.8 m and corresponding 𝑇𝑃 = 9.23 s and 

𝜃𝑚 = 344.4° during a two-day storm. The value of 𝑠𝑘𝑇𝑃  (0.23), close to zero, indicates that the 

distribution of the corresponding data is close to be symmetrical while the highest value of ku 

(7.1) is given by 𝐻𝑆 indicating a sharp peak of the distribution. 

 

Table 5-1. Basic statistics of the wave parameters obtained from the spectral time series at 

Pout2 between 01/2016 and 12/2016. Square brackets denote units of the corresponding 

wave parameter where necessary. 

 N m sd min p50 max sk ku 

𝐻𝑆 (m) 8784 0.9 0.7 0.1 0.7 4.8 1.8 (–) 7.1 (–) 

𝑇𝑃 (s)  5.08 1.53 1.37 5.21 10.15 0.23 (–) 2.9 (–) 

𝜃𝑚 (°)  394.1 0.6 (–) – 396.7 – −0.01 (–) 0.7 (–) 
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Figure 5-12. Rose diagram of significant wave height and wave direction at Pout2 for the 

period 01/2016–12/2016. Intervals for 𝐻𝑆 and 𝜃𝑚 are 𝛥𝐻𝑆 = 0.5 and 𝛥𝜃𝑚 = 15°, 
respectively. 

As regards 𝜃𝑚, the low value of sd (0.6) corresponds to a circular dataset that is highly 

concentrated, which can be also verified in Figure 5-12, while sk value close to zero (−0.01) 

denotes a unimodal distribution. The wave rose of 𝐻𝑆 at Pout2 is depicted in Figure 5-12, along 

with the corresponding frequencies of occurrence. The scattering of wave directions is limited 

to the sector due to the topography and coast orientation of the study area with the prevailing 

wave directions coming from the north direction (sector [300°, 315°]), which are attributed to 

the very large fetch (390 km). The highest frequency of occurrence (13%) as regards wave 

propagation in the dominant direction is observed for values of 𝐻𝑆 between 0.5 m and 1 m while 

the corresponding values of 𝑇𝑃 exhibiting the highest frequency of occurrence are between 4 s 

and 6 s. Intense sea states (𝐻𝑆 > 2.5 m) with the highest frequency of occurrence 

(2%) correspond to the sector [345°, 0°]. 
 

 

Input data 

 

For practical reasons, the period of the simulation is confined to one year, i.e. from January 1 

to December 31, 2016. As already mentioned the bathymetry resolution for the inner model 

domain gets progressively finer as we move from level 1 to level 2, which is the area of interest 

as concerns the simulation results and the evaluation of the methodology. The timestep is set to 

Δ 𝑡 = 3600 s, equal with the time interval of the available time series. Prior to the description 

of the input data for the one-year wave time series, let it be mentioned that the authors kept 

some parameters at their default values since no in situ measurements were available for 

calibration of the model. 

 

As regards HD module, the most essential input data include: wave radiation stress gradients 

that force the flows, bed resistance, eddy viscosity and boundary conditions. Eddy viscosity is 

based on the Smagorinsky coefficient with a constant value at 0.28, bed resistance expressed 

through the Manning number was fixed (32 m1/3/s) in the entire inner model domain apart from 

its south-eastern part due to the presence of bedrock formations while density is not updated 

during the simulation (barotropic mode). Note that tidal potential is very low in Sitia bay thus 

it is not considered in the model setup. At the open boundaries, current velocities (varying in 

time and along boundary) are used as input obtained from the simulation results of the outer 

model while at the closed boundary, the normal velocity component is set to zero, assuming 

full slip boundary conditions. 
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As in the HD module, the instationary mode as regards time formulation was adopted as well 

in the SW module as well, with a directionally decoupled parametric formulation. The 

conditions at the open boundaries (at the north and east side of the model domain) were kept 

constant in space (along the boundary line) and varying in time while the boundary data 

consisted of significant wave height 𝐻𝑆, peak wave period 𝑇𝑃, mean wave direction 𝜃𝑚 and 

directional spreading index 𝑛𝑑𝑠. Additional model parameters were wave breaking specified by 

the gamma parameter 𝛾𝑤𝑏 = 0.8 constant in space, bottom friction specified by the Nikurdase 

roughness 𝑘𝑁, which was varying in space ranging from 6.25 mm to 0.25 mm for level 1, and 

1.9 mm for level 2 while for the bedrock formations the value of 62.5 mm was selected. 

 

Regarding the setting up of the ST module, sediment transport rates and seabed level changes 

under the combined action of waves and currents are calculated through interpolation of 

sediment transport tables. These tables are generated in advance and include the following 

parameters: root-mean square wave height, peak period, current speed, wave height-to-water 

depth ratio, angle between current and waves, median grain diameter 𝑑50 and sediment grading. 

The ST calculations are activated at the initial timestep while the timestep factor is set to 1, 

meaning that sediment transport rates and seabed level are calculated every timestep. Apart 

from the flow (HD) and wave (SW) forcings, the specification of sediment properties and the 

considerations of morphological impact on hydrodynamics are two important features that need 

to be provided for the area of interest. To this end, as regards the granulometric composition of 

the bottom sediments in the study area, the sea bottom consists of sand with an average diameter 

of 𝑑50 around 0.65–0.85 mm up to the isodepths of 1.5–2 m and with 𝑑50 between 0.08 mm 

and 0.25 mm for depths above 15 m (Anagnostou et al., 2017). Sediment grading was kept 

fixed, equal to 1.45, at the entire model domain. The initial bed layer thickness for all levels 

was set to 0.5 m apart from the bedrock part (0.0001 m). 

 

In terms of the representative wave conditions (both over- and sub-critical ones), the parameters 

of the model setup remained the same except for the time formulation (quasi stationary mode) 

and the start time of the ST calculations since all modules were synchronized to start at the 

same timestep. 

 

 

5.5.5 Results 
 

Representative wave conditions 

 

In this study, the time period of the analysed wave data is confined between 01/2016 and 

12/2016; henceforth, when we refer to the full time series of 2016 we use the term “reference 

wave data”. The time series of the reference wave data for 𝐻𝑆 and 𝑇𝑃 at Pinn,m is presented in 

Figure 5-13. Consecutive intense wave conditions with 𝐻𝑆 > 1.5 m occurred mainly during the 

last two months of the examined year. In the majority of the timesteps, high values of 𝐻𝑆 

correspond to high values of 𝑇𝑃 as regards the examined location, rendering these pairs 

candidates for the initiation motion of sediments. According to the methodology, the first step 

is to calculate representative orbital velocity, bed shear stress and wave shear velocity by using 

the 𝐻𝑆 and 𝑇𝑃 time series of Pcd by applying Eqs. (5.4), (5.9) and (5.12), respectively. Based on 

the calculation of the Shields parameter and its threshold value, the over-critical wave 

conditions at Pcd are determined. Classifying the reference wave data at Pcd into classes of 𝐻𝑆 

and 𝑇𝑃 with intervals 0.5 m and 1 s, respectively, we obtain Figure 5-14(b). From this figure it 

can be noticed that the lower threshold values for the onset of sediment transport, based on the 

Shields criterion, correspond to waves higher than 1 m with peak period between 6 s and 10 s 

and mean wave direction around 25°–29° as regards Pcd. 
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Figure 5-13. Time series of 𝐻𝑆 and 𝑇𝑃 at Pinn,m for the year 2016. Blue and red dots 

indicate over-critical values of 𝐻𝑆 and 𝑇𝑃, respectively. 

Identifying the corresponding wave conditions at the boundary of the inner model, i.e. at Pinn,m, 

the corresponding threshold values are presented in Figure 5-14(a) with the blue outline having 

minimum values 1.5 m and 6 s for 𝐻𝑆 and 𝑇𝑃, respectively, and in the range [355°, 5°] for 𝜃𝑚. 

As a whole, nine representative intense wave conditions (i.e. over-critical pairs) were taken into 

account for the estimation of rates of seabed level chanrg over the examined period. From the 

same figure, the calm (sub-critical) wave conditions were derived by further grouping these 

classes into eight representative calm wave conditions with the same interval for 𝐻𝑆 and a 

varying one for 𝑇𝑃, depending on the bivariate histogram. Let us remind that small values of 

𝐻𝑆 (i.e. <0.5 m) are not considered in the next steps of the technique since the model runs of 

the sensitivity analysis, performed by the same authors, demonstrated that such waves present 

almost negligible quantities of sediment transport rates. Altogether, 17 (𝐻𝑆, 𝑇𝑃) pairs, along 

with the corresponding values of 𝜃𝑚, are considered in the analysis, which were simulated 

separately. 

  

Figure 5-14. Bivariate histogram of (𝐻𝑆, 𝑇𝑃) for (a) Pinn,m, and (b) Pcd for the year 2016. 

The blue closed lines indicate the over-critical values and the green rectangles indicate the 

sub-critical pairs.  
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Application of the methodology at the examined coast 

 

Eight shallow locations are selected for examining the methodology described in Section 5.5.2; 

their geographical location, depth and distance from shore are given in Table 5-2. These points 

cover a distance of approximately 1,100 m along the coast with their in-between distance being 

around 150 m; their location on the map is shown in Figure 5-15(a). 

 

Table 5-2. Name of location, geographical coordinates, depth and distance from shore. 

Location Geographical coordinates (lon, lat) 

(°) 

Depth 

(m) 

Distance from shore 

(m) 

A (26.1090°, 35.2060°) -1.23 26 

B (26.1101°, 35.2050°) -1.42 38 

C (26.1113°, 35.2041°) -1.38 37 

D (26.1129°, 35.2030°) -1.08 37 

E (26.1143°, 35.2024°) -1.57 41 

F (26.1158°, 35.2017°) -1.02 39 

G (26.1172°, 35.2013°) -0.87 40 

H (26.1188°, 35.2007°) -0.58 45 

 

 

Figure 5-15. (a) Map of the examined area (from Google Earth) indicating the locations 

for the estimation of seabed level based on the proposed methodology at Sitia beach. (b) 

Photo near location G indicating erosion problem. 

As regards the over-critical (𝐻𝑆, 𝑇𝑃) pairs, the values of rates of seabed level change for 

locations C, D, E, F, G and H are negative, with values between −0.003 m/day and −0.003 

m/day and −0.036 m/day. In general, the eastern locations (i.e. E, F, G and H) present the 
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highest negative rates of seabed level change while the western locations A and B are 

characterized by negative and positive rates of varying magnitude. With respect to the sub-

critical (𝐻𝑆, 𝑇𝑃) pairs, smaller, negative and positive, rates of seabed level change are provided 

by all locations compared to the above pairs with the highest positive value (0.034 m/day) 

encountered at location E and the highest negative value (−0.033 m/day) at location F. 

 

A more analytic representation for estimating seabed level with the proposed methodology is 

given in Figure 5-16 for location A, and in Figure 5-17 for location F regarding specific 

representative (𝐻𝑆, 𝑇𝑃) pairs. In the left panels of the above figures, the vertical lines denote the 

time windows of the over-critical (𝐻𝑆, 𝑇𝑃) pairs in terms of sediment initiation; in the examined 

annual time scale, 30 time frames were identified by the methodology. In the right panels of the 

same figures, the rates of seabed level change are plotted for the two different types of 

representative wave conditions (i.e. over- and sub-critical). As it was expected, the rates of 

seabed level change for the over-critical (𝐻𝑆, 𝑇𝑃) pair present higher values compared with the 

sub-critical pairs at both locations. 

  

Figure 5-16. (a) Wave parameters along with seabed levels obtained from the two 

approaches. (b) Rates of seabed level change obtained from the proposed methodology for 

one over-critical and one sub-critical representative wave condition at point A 

  

Figure 5-17. (a) Wave parameters along with seabed levels obtained from the two 

approaches. (b) Rates of seabed level change obtained from the proposed methodology for 

one over-critical and one sub-critical representative wave condition at point F. 
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Specifically, as regards location A, the pattern of the over-critical wave case shows some 

resemblance with the sub-critical one; in both cases, the rate of seabed level change strongly 

fluctuates during the 2-week simulation, taking mainly positive values, while at the 8th day of 

simulation a relative stabilization is evident. On the other hand, for location F, the rates present 

a dissimilar behaviour from location A; the rate of seabed level change seems to be stabilized 

around zero after eight days of simulation for the over-critical representative wave conditions 

while it takes constantly negative values, after the second day of simulation, with bigger 

fluctuations for the sub-critical ones. 

 

In Figure 5-18, the values of seabed level obtained from the simulations results of MIKE21 

CFM with the reference wave data as input, represented by the dashed line, and the proposed 

methodology, represented by the solid line, are plotted at the examined locations. From this 

figure, the following comments can be summarized: 

 

 Locations B and D exhibit a very good agreement between the two approaches; throughout 

the year, the corresponding seabed levels follow the same tendency and are very close with 

each other while as regards the last month, the deviation between the two seabed level values 

is 0.7 cm and 0.4 cm, respectively, which are the smallest differences among the examined 

cases. 

 Locations A and C, which follow a bathymetric profile with smooth to intermediate slopes 

(not shown here), and location H as well, exhibit medium-size deviations at the end of 2016, 

with values between 2.2 cm and 2.8 cm, respectively; however, the resemblance of the 

pattern that the two lines follow throughout the year is rather poor. 

 The locations E and F, with the latter having a steep bathymetric profile, exhibit the second 

largest deviation at the end of 2016 (4.5 cm) but the lines indicating the seabed levels are in 

accordance in terms of the trend. 

 Location G (see also Figure 5-15(b)) presents the highest deviation (6.6 cm) compared with 

the reference time series. 

 The seabed level slope at locations A, B and C is positive indicating accretion in the western 

side of the Sitia coast while location D is characterized by a small negative slope (i.e. erosion 

pattern). Locations E and F present a steeper positive slope than the western locations, and 

locations G and H exhibit a higher negative slope than location D, implying more distinct 

erosion patterns. Overall, this behaviour coincides quite satisfactorily with the real situation 

encountered in the Sitia coast during the examined period, where the eastern part has been 

eroded to a great extent leading to the collapse of the retaining wall of the coastal road. 

 

 

5.5.6 Discussion 
 

The scope of this work was to reduce the reference wave data (of one-year duration) into two 

groups, i.e. (i) the over-critical (𝐻𝑆, 𝑇𝑃) pairs that fulfil the Shields criterion leading to sediment 

initiation, and (ii) the sub-critical (𝐻𝑆, 𝑇𝑃) pairs that do not fulfil this criterion, in order to 

significantly reduce computational times and compare the estimated seabed level values with 

the full case. The results of the proposed methodology compared to the ones obtained from 

utilizing the entire time series of the available wave data present similar trends, and the 

differences remain under 7%. 

 

In this connection, some notable aspects should be remarked. Various sources of uncertainties 

as regards the discrepancies can be attributed to the assumptions that are imposed throughout 

the adopted technique. For instance, turbulence caused by wave breaking is not considered 

although it can be a source of sediment mobilization. Other uncertainties deal with the 

calculation of bottom orbital velocity, related indirectly with the Shields criterion, that does not 

take into account the presence of currents while the assumed spectral form might also influence 

bottom orbital velocity. For more details in terms of the potential sources of error in the 
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calculation of bottom orbital velocity from wave spectral parameters such as 𝐻S and 𝑇P, see 

further assumptions provided by Wiberg and Sherwood (2008). Furthermore, in the context of 

the sensitivity analysis, the authors followed an alternative way to estimate bottom orbital 

velocity and friction factor. The corresponding values derived from the simulation results of 

the reference wave data reached common over-critical combinations of 𝐻S and 𝑇P.  

 

Another potential source of uncertainty could be the estimation method of the mean rates of 

seabed level change. Many dissimilar ways were tested by the authors including mean rates 

from one week, different mean rates based on the (𝐻𝑆, 𝑇𝑃) pairs and the examined location, 

mean rates calculated with a smaller time interval during the simulation runs etc. However, the 

adopted approach showed consistently better performance in terms of seabed level prediction.  

 

Let us also highlight that a more proper and fair comparison would be to assess both results 

from model simulations with in situ measurements of seabed level at the site of interest. The 

absence of real measurements has a twofold effect: i) it places the comparison into relative 

terms, and ii) it renders model calibration infeasible, thus the model results per se should be 

used with caution. Nevertheless, such comparison is beyond the scopes of this study. Moreover, 

due to the lack of real measurements, it is also recommended not to apply speed-up techniques 

since they require careful calibration and validation. 

 

Another worth-mentioning fact refers to the distribution of wave direction. Specifically, the 

window of wave directions that affect significantly the morphological (bed level) conditions of 

the examined beach is very narrow since in the majority northern wave directions are dominant. 

This feature along with the gentle bottom slope and the uniformity of the coast as regards its 

shape render the study area a simple and easy example to implement this methodology 

compared to more complex cases.  

 

Figure 5-18. Seabed levels derived from MIKE21 CFM (dashed red line) and the proposed 

methodology (solid black line). 



Case study 2: Sediment transport simulation based on the influence of cumulative wave action 

at a sandy beach 

156 

In reference with the overall computation time of the model simulations, there is a striking 

discrepancy between the two approaches. For MIKE21 CFM with the full reference wave data 

as input, the total runtime was 542 h while for the 17 representative wave cases of the proposed 

methodology, the corresponding runtime was 2 h. All simulations were conducted on an i7-

2600 CPU server with 16 GB RAM and 3.40 GHz processor. Although current version of DHI 

is designed for parallel computing using graphics processors and could significantly accelerate 

the calculation process, still the present approach contributes to a significant runtime reduction, 

which for the particular non-parallel computing setup used is of the order of 99.6%. The latter 

result is quite impressive compared to the outcome presented in Figure 5-18, at least for the 

case-study examined, characterised by mild bottom topography and coastal characteristics, and 

regularly in the distribution of offshore wave directions. 
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Chapter 6 Conclusions and recommendations for future 

research directions  

6.1 Summary 
 

The objective that was at the core of this thesis was the probabilistic modelling of wind and 

wave variables, both linear and directional, with focus on the entire data sample, the extreme 

data and the relationship between two linear or directional variables. In this context, two 

specific areas of application that receive a lot of attention from the scientific community were 

selected for further investigation: i) the marine renewable energy sector, and; ii) the issue of 

coastal erosion. The two most promising forms of marine renewable energy for development 

in the Mediterranean Sea is offshore wind, with floating foundations offering the most optimum 

solution due to the deep continental shelf of this basin if the technological challenges are 

surpassed, and wave energy with numerous concepts and configurations but still with no 

reliable and cost-efficient solution towards commercialization. On the other hand, wind and 

wave forces are among the most important factors that affect erosion rates of a sandy beach. 

Apparently, these two research fields are also interconnected in many aspects; for instance, the 

presence of a wind (or wave) farm close to the coastal zone have impacts on the wave field and 

in turn, on the morphodynamics of the nearby coastal area due to the interactions between the 

turbines (devices) themselves, and with the adjacent coastal environment as well. Below, the 

main conclusions and contributions from this study are summarized. 

 

Metocean climate variability has received a lot of attention in the relevant literature as the 

lifetime of marine renewable energy projects is planned for a long period (e.g. usually 30 years 

for an offshore wind farm). The main concern is energy generation, which is directly linked to 

various metocean variables. Since the spatial distribution and quality of wind/wave resource 

can be altered rigorously because of the climate change, the knowledge of climate variability 

can shed light on many aspects, such as planning phase and operating conditions. In this 

connection, when considering sufficiently long-duration metocean data, it was shown that long-

term variations of metocean climate of both linear and directional characteristics should be 

identified and quantified not only for the annual (inter-annual) time scale but for seasonal and 

decadal (inter-decadal) cycles as well, indicating additional features and trends that might be 

associated with climate change. Moreover, diverse probabilistic models for linear and 

directional variables were quantitatively assessed in a consistent manner for both the univariate 

and bivariate case, revealing interesting aspects for the linear-directional modelling. 

 

In offshore and coastal engineering applications, it is essential to work with metocean data of 

high quality. Among the main sources of uncertainty is uncertainties associated with the 

deficiencies that characterize each data source. Such uncertainties can be reduced by calibrating 

linear and directional data from the less accurate data sources, i.e. numerical models and 

satellite observations, with in situ measurements used as a reference source. Regression 

calibration method was used for this purpose with emphasis on robust estimators for linear 

variables, known to be efficient in the presence of outliers or when there are small deviations 

from the model assumptions. Statistical measures, such as bias, root mean square error and 

scatter index, were calculated from concurrent data to quantify the performance of the 

corresponding regression model and in turn, the relevant uncertainties. Calibration of 

directional variables was also performed in the present thesis with the results verifying its 

significance in engineering applications.  

 

As already mentioned, the accurate analysis of extreme weather conditions plays a decisive role 

in marine renewable energy and provides basic information for the research on the design and 

in turn, reliability of the structure to withstand all environmental loads that is expected to face. 
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The directional description of the extreme climate of linear metocean variables is also important 

especially in planning and siting of a marine renewable energy project. On these grounds, the 

dependence of linear metocean variables with directionality was examined for performing 

extreme value analysis. Shape and scale parameters of the Generalized Pareto distribution were 

considered as functions of direction to account for this dependence in the estimation of design 

values, which was expressed by a Fourier series expansion due to its periodicity. Different 

methods for threshold selection and declustering were investigated and a penalised likelihood 

criterion was proposed for the estimation of the model parameters.  

 

With regard to the problem of coastal erosion, the wave regime is a determinative factor in the 

formation of coastal shoreline and morphology. To this end, the response of sandy beaches to 

wave action under extreme (e.g. after a storm) and typical (e.g. considering the wave action 

during a year) conditions was examined by utilizing two different concepts, episodic and long-

term erosion, respectively. In the former case, coastal erosion is mainly related to the 

predominance of high waves with a time span from some hours to days while in the latter one, 

the coast progressively adapts its form to the frequency and intensity of extreme events along 

with the prolonged calm wave conditions. Modelling of wave propagation, circulation and 

sediment transport was performed with the MIKE software. Specific cross-shore sections were 

selected to study the beach profile changes as regards episodic events at a beach, where 

measurements, available from a topographical survey were used as a reference source for 

comparison purposes. A cost-effective methodology was proposed for the prediction of the 

evolution of seabed level in the long-term erosion and specific points along a sandy beach were 

assessed. The obtained numerical results showed a fair agreement with the real status of the 

examined coast.  

 

 

6.2 Future research directions 
 

In this chapter, some suggestions for future research on different directions related with the 

scopes of the present thesis are summarized.  

 

 Construction of trivariate statistical models for metocean data, including linear and 

directional variables, for the full description of sea states and wind conditions. Such models 

are useful for the selection of the most suitable energy device and its optimum design and 

arrangement (in case of arrays) at a candidate site. 

 Quantitative assessment of the impact of climate change on the energy extraction of marine 

renewable energy sources to understand how the availability of these resources will be 

influenced. For this purpose, either hindcast or climate models can be used while estimates 

of changes for the directional variables should also be included.  

 Identification of outliers in circular data through various statistics and investigation of robust 

estimators that are extended in the circular-circular regression model. The results of this 

thesis indicate that robust estimators applied in linear variables perform consistently better 

that the classical regression methods; hence, studying further the influence of outliers in 

directional data would be of considerable interest.  

 As regards the directional extreme value model, it would be interesting to examine an 

alternative model to Fourier series expansion for expressing smoothly the periodicity of the 

parameters in terms of direction. Moreover, the consideration of a threshold that is 

directionally varying would also be meaningful while the effects of selecting various 

numbers of sectors, either equiangular or not, for the independent fits deserve a thorough 

investigation. 

 Implementation of the methodology proposed for the estimation of the seabed level with 

simultaneous reduction of the computational time to another coastal site. Preferably, this site 
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should have more complex topographical features that allow a wider range of wave 

directions affecting the morphological conditions while the availability of in situ 

measurements of seabed is important for validation purposes. Furthermore, the proposed 

methodology could be enhanced. For instance, additional factors that influence sediment 

transport and seabed level, such as currents, could be included while the impacts of a finer 

resolution of the involved wave parameters during the discretization process along with a 

longer reference time series could be also analysed. 
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Appendix A Descriptive statistics for circular variables 
 

For the representation of circular data two coordinates systems are used: i) the rectangular (or 

Cartesian) coordinate system, representing the location of a point 𝑍 on a plane by a pair of 

coordinates (𝑥𝑍, 𝑦𝑍), and ii) the polar coordinate system, where the distance 𝑟 between the 

origin and the point 𝑍 is needed along with the angle 𝜃 formed by the reference line and a line 

going through point; see also Figure A-1.  

 

Figure A-1. Graphical representation of rectangular and orthogonal coordinate systems. 

The two coordinate systems are related with each other by the following equations:  

 

 𝑥𝑍 = 𝑟cos𝜃, 𝑦𝑍 = 𝑟sin𝜃. 
(A.1) 

 

Since the direction is only of interest, it is considered that we work on a unit circle (i.e. with 

𝑟 = 1 centred at the origin). Hence, Eq. (A.1) simply becomes 

 

 𝑥𝑍 = cos𝜃, 𝑦𝑍 = sin𝜃.  (A.2) 

 

Equivalently, another representation for circular data is achieved through complex number. The 

corresponding relation is 𝑧 = exp(𝑖𝜃) = cos𝜃 + 𝑖sin𝜃, where 𝑖 = √−1.  

 

 

A.1 Measures of location 
 

Let us assume a circular random variable 𝛩 and 𝜃1, … , 𝜃𝑛 a set of circular observations with 𝑛 

the total number of observations. The calculation of the circular mean direction is based on the 

trigonometric functions sine and cosine of the circular observations and is obtained by working 

with polar coordinates. The corresponding expression is given by: 

 

 𝑚𝛩 = �̅� = atan2(𝑆 𝐶⁄ ) =

{
 
 

 
 
atan(𝑆 𝐶⁄ ),            𝐶 > 0, 𝑆 ≥ 0

atan(𝑆 𝐶⁄ ) + 2𝜋, 𝐶 ≥ 0, 𝑆 < 0
atan(𝑆 𝐶⁄ ) + 𝜋,    𝐶 < 0
𝜋 2,                         𝐶 = 0, 𝑆 > 0⁄

−𝜋 2,                     𝐶 = 0, 𝑆 < 0⁄
undefined,             𝐶 = 0, 𝑆 = 0,

 (A.3) 

 

where 𝐶 = ∑ cos𝜃𝑗
𝑛
𝑗=1  and 𝑆 = ∑ sin𝜃𝑗

𝑛
𝑗=1 . When 𝐶 = 𝑆 = 0 (and the sample size is even), the 

circular data are uniformly/evenly distributed or have a cyclic structure over the unit circle. 
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Mean direction reflects the centre of a (unimodal) set of directions and is independent of the 

choice of zero direction and the sense of rotation.  

 

The quantity 𝑅 = √𝐶2 + 𝑆2 ≥ 0 is called resultant length and is associated with mean direction 

by the equations 

 

 cos�̅� = 𝐶 𝑅⁄ , sin�̅� = 𝑆 𝑅⁄ . (A.4) 

 

Apart from the mean direction (Eq. (A.3)), an additional measure of location is the sample 

median direction �̃�. This measure is defined by any angle 𝜔 for which the circular data are 

equally divided in the arc [𝜔,𝜔 + 𝜋] and the majority of the data points lie closer to 𝜔 rather 

than the antipodal point (i.e. 𝜔 + 𝜋). Just as in linear data, when the sample size 𝑛 is odd, the 

median direction is one of the data points; otherwise, it is the mean value of two data points. It 

is obvious that the median is not uniquely defined therefore the interpretation of the results 

should be made with caution. 

 

 

A.2 Measures of concentration, dispersion and circular distance 
 

The mean resultant length �̅� = 𝑅 𝑛⁄ , �̅� ∈ [0, 1], is considered as a measure of concentration for 

unimodal circular data. In general, values of �̅� close to 1 indicate that the circular data are 

highly concentrated about the mean direction. When �̅� = 1, it is implied that all the sample 

observations coincide. On the other hand, �̅� = 0 does not necessary imply that the data are 

evenly spread around the circle, as already mentioned above. 

 

The circular variance, a measure of dispersion, is defined 

 

 𝑉𝛩 = 1 − �̅�, 𝑉 ∈ [0, 1].  (A.5) 

 

The circular standard deviation is given by 

 

 𝑠𝛩 = {−2log(1 − 𝑉Θ)}
1 2⁄ , 𝑠 ∈ [0,∞).  (A.6) 

 

Another approximation for circular standard deviation, when 𝑉 is small, is 

 

 𝑠𝛩 ≃ √2𝑉𝛩 = √2(1 − �̅�). (A.7) 

 

The sample circular dispersion is defined by 

 

 𝛿 =
1 − �̅�2

2�̅�2
, (A.8) 

 

where �̅�2 is the sample mean resultant length of 2𝜃1, … , 2𝜃𝑛.  

 

A related definition is the circular distance measure between any two points 𝜃,𝜔 on the 

circumference in terms of arc lengths is 

 

 𝑑 = min(𝜃 − 𝜔, 2𝜋 − (𝜃 − 𝜔)) = 𝜋 − |𝜋 − |𝜃 − 𝜔||, 𝑑 ∈ [0, 𝜋]. (A.9) 

 

The corresponding dispersion between a set angles 𝜃1, … , 𝜃𝑛 and an angle 𝜔 is found by 
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 𝑑(𝜔) =
1

𝑛
∑{𝜋 − |𝜋 − |𝜃𝑗 −𝜔||} .

𝑛

𝑗=1

 (A.10) 

 

The minimization of the above function yields the sample median direction.  

 

An alternative expression of circular distance is given in terms of the cosine function as follows 

 

 𝑑∗ = 1 − cos(𝜃, 𝜔), 𝑑∗ ∈ [0, 2]. (A.11) 

 

Skewness and kurtosis are expressed in terms of the second central sine and cosine moments, 

respectively, as follows 

 

 �̂� =
(1 𝑛⁄ )∑ sin2(𝜃𝑗−�̅�)

𝑛
𝑗=1

(1−�̅�)3 2⁄ =
�̅�2sin(�̅�2−2�̅�)

(1−�̅�)3 2⁄ ,  and (A.12) 

 

 �̂� =
(1 𝑛⁄ )∑ cos2(𝜃𝑗 − �̅�)

𝑛
𝑗=1

(1 − �̅�)3 2⁄
=
�̅�2cos(�̅�2 − 2�̅�) − �̅�

4

(1 − �̅�)2
. (A.13) 

 

In general, positive values of kurtosis imply peaked distributions and positive values of 

skewness suggest that the sample data are skewed in the clockwise direction. Values of the 

above measures around zero suggest symmetric distributions.  

 

 

A.3 Measures of correlation  
 

The statistical association between a linear random variable 𝑋 and a circular variable 𝛩 can be 

quantified through the linear–circular correlation coefficient 𝑟𝑋𝛩
2 , which is defined as follows: 

 

 𝑟𝑋𝛩
2 =

𝑟𝑋𝑐
2 + 𝑟𝑋𝑠

2 − 2𝑟𝑋𝑠𝑟𝑋𝑐𝑟𝑐𝑠

1 − 𝑟𝑐𝑠
2 , (A.14) 

 

where 

 

 {

𝑟𝑋𝑐 = 𝜌[(𝑥1, cos 𝜃1), (𝑥2, cos𝜃2), . . , (𝑥𝑛, cos𝜃𝑛)]

𝑟𝑋𝑠 = 𝜌[(𝑥1, sin 𝜃1), (𝑥2, sin𝜃2), . . , (𝑥𝑛, sin 𝜃𝑛)]

𝑟𝑐𝑠 = 𝜌[(cos𝜃1 , sin 𝜃1), (cos𝜃2 , sin 𝜃2), . . , (cos𝜃𝑛 , sin 𝜃𝑛)],

 (A.15) 

 

with 𝜌 denoting the Pearson product-moment correlation between 𝑋 and 𝛩. 

 

The statistical correlation coefficient between two directional random variables 𝛩, 𝛷 are 

estimated  

 

 𝑟𝛩𝛷
2 =

(𝑟𝑐𝑐
2 + 𝑟𝑐𝑠

2 + 𝑟𝑠𝑐
2 + 𝑟𝑠𝑠

2) + 2𝑅𝑐𝑠𝑟1𝑟2 − 2𝑅𝑐𝑠𝑟1 − 2𝑅𝑐𝑠𝑟2
(1 − 𝑟1

2)(1 − 𝑟2
2)

, (A.16) 

 

where  

 

 {

𝑅𝑐𝑠 = 𝑟𝑐𝑐𝑟𝑠𝑠 + 𝑟𝑐𝑠𝑟𝑠𝑐
𝑟1 = 𝜌[(cos 𝜃1 , sin 𝜃1), (cos𝜃2 , sin 𝜃2), … , (cos 𝜃𝑛 , sin 𝜃𝑛)]

𝑟2 = 𝜌[(cos𝜙1 , sin𝜙1), (cos𝜙2 , sin𝜙2),… , (cos𝜙𝑛 , sin𝜙𝑛)].
 (A.17) 
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A.4 Sample trigonometric moments 
 

The 𝑝 −th trigonometric moment about the zero direction is 

 

 𝑚′𝑝 =
1

𝑛
∑𝑒𝑖𝑝𝜃𝑗
𝑛

𝑗=1

=
1

𝑛
∑(cos𝑝𝜃𝑗 + 𝑖 sin𝑝𝜃𝑗)

𝑛

𝑗=1

= 𝐶�̅� + 𝑖𝑆�̅�, (A.18) 

 

where 𝑝 = 0,±1,±2,…, 𝐶�̅� =
1

𝑛
∑ cos𝑝𝜃𝑗
𝑛
𝑗=1  and 𝑆�̅� =

1

𝑛
∑ sin𝑝𝜃𝑗
𝑛
𝑗=1 . Also note that 𝐶−̅𝑝 = 𝐶�̅� 

and 𝑆−̅𝑝 = −𝑆�̅�.  

 

The polar representation of 𝑚′𝑝, when �̅�𝑝 > 0, is  

 

 𝑚′𝑝 = �̅�𝑝𝑒
𝑖�̅�𝑝 = �̅�𝑝(cos�̅�𝑝 + 𝑖sin�̅�𝑝), (A.19) 

 

where �̅�𝑝 is the sample mean resultant length of 𝑝𝜃1, … , 𝑝𝜃𝑛 and �̅�𝑝 is the sample mean 

direction of 𝑝𝜃1, … , 𝑝𝜃𝑛.  

 

From Eqs.(A.4), (A.18) and (A.19) it follows that  

 

 𝐶�̅� = �̅�𝑝cos�̅�𝑝 and 𝑆�̅� = �̅�𝑝sin�̅�𝑝.  (A.20) 

 

As regards the 𝑝 −th trigonometric moment about the mean direction, the corresponding 

relation is  

 

 𝑚𝑝 = 𝑐�̅� + 𝑖�̅�𝑝, (A.21) 

 

where 𝑐�̅� =
1

𝑛
∑ cos𝑝(𝜃𝑗 − 𝜃)
𝑛
𝑗=1  and �̅�𝑝 =

1

𝑛
∑ sin𝑝(𝜃𝑗 − �̅�)
𝑛
𝑗=1 .  
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Appendix B Statistical analysis for metocean climate 

modelling  
 

In the context of metocean climate modelling, various statistical measures can be applied for 

the description of the variables of interest. The most common measures are the low-order 

statistical moments (e.g. mean value, standard deviation) that can reveal different features of 

the examined phenomenon when estimated for different time scales (e.g. monthly, annual, 

decadal etc.) if the available time series permits such estimations; see Appendix B.1. Additional 

informative parameters are the measures of variability and correlation; for instance, mean 

annual and inter-annual variability, defined in Appendix B.2, are important measures in the 

climate analysis and a variety of applications such as offshore engineering industry. Moreover, 

the relation between linear and directional variables can be examined in terms of correlation 

coefficients, as described in Appendix B.3, while evaluation metrics presented in Appendix 

B.4, are used to quantify the quality of the regression models. In Appendix B.5, the coefficient 

of determination (for the univariate case) is provided, which is widely used when a number of 

distributions are compared in terms of suitability, and in Appendix B.6, the Mann-Kendall test, 

used for monotonic trend analysis, is briefly described.  

 

 

B.1 Descriptive statistics for different time scales 
 

The following notation and equations correspond to the linear variable 𝑋. The directional 

variable and its derived parameters follow the same nomenclature; however, in this case, the 

statistical parameters are calculated by using directional statistics. Some background theory of 

directional statistics is provided in Appendix A. Wherever necessary, the explicit notation of 

the directional parameters is provided. 

 

Let denote the annual mean value of a linear variable 𝑋 for a particular year 𝑗 by  

 

 𝑚𝑢,𝑌=𝑗 =
1

N
∑𝑥𝑖

N

𝑖=1

, (B.1) 

 

where N is the total number of the 𝑝 −hour intervals, where usually 𝑝 = 1,3,6, for year 𝑗 and 

𝑥𝑖 is the time series of the linear variable. The sequence of the above annual mean values for a 

series of years is denoted by 𝑚𝑥,𝑌(𝑗), 𝑗 = 1,2,… , J, wherefrom the mean annual value 𝑚𝑥,𝑌 is 

estimated as follows: 

 

 𝑚𝑥,𝑌 =
1

J
∑𝑚𝑥,𝑌(𝑗)

J

𝑗=1

. (B.2) 

 

The monthly mean wind speed for a particular year 𝑗 and month 𝑚, denoted by 𝑚𝑢,𝑌=𝑗,𝑀=𝑚, is 

obtained  

 

 𝑚𝑢,𝑌=𝑗,𝑀=𝑚 =
1

K
∑𝑥𝑖

K

𝑖=1

, (B.3) 

 

where K is the total number of the p-hour intervals for month 𝑚 of year 𝑗. The sequence of the 

above monthly mean values for a series of years is denoted by 𝑚𝑥,𝑌,𝑀(𝑗,𝑚), 𝑗 = 1,2,… , J, 𝑚 =
1,2,… ,M. The mean monthly value for a particular month 𝑚, 𝑚𝑥,𝑀=𝑚 can be estimated from 

an appropriately selected subsequence of 𝑚𝑥,𝑌,𝑀(𝑗,𝑚), as follows: 
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 𝑚𝑢,𝑀=𝑚 =
1

J
∑𝑚𝑥,𝑀=𝑚(𝑗), for 𝑚 = 1,2,… ,12,

J

𝑗=1

 (B.4) 

 

where 𝑚𝑥,𝑀=𝑚(𝑗), 𝑗 = 1,2,… , J, denotes the sequence of monthly mean values for the particular 

month 𝑚 for the entire series of years. 

 

 

B.2 Variability measures 
 

The coefficient of variation is used as a relative measure of the dispersion of data points around 

the mean. In particular, the mean annual variability, denoted as CV (also referred to as MAV), 

provides a measure of variability of the linear variable within each year and is estimated by 

 

 CV =
1

J
∑

𝑆𝑥𝑢,𝑌(𝑗)

𝑚𝑥,𝑌(𝑗)

J

𝑗=1

, (B.5) 

 

where 𝑆𝑢,𝑌(𝑗) is the standard deviation of the linear variable for the year 𝑗, 𝑗 = 1,2,… , J (Stopa 

et al., 2013).  

 

The inter-annual variability, denoted as IAV, provides an indication of the variability from year-

to-year of the linear variable. It is defined as the ratio of the standard deviation 𝑆𝑚𝑥,𝑌(𝑗) of the 

annual mean value sequence 𝑚𝑥,𝑌=𝑗, to the overall mean wind speed value 𝑚𝑥, i.e. 

 

 IAV =
𝑆𝑚𝑥,𝑌(𝑗)

𝑚𝑥
. (B.6) 

 

 

B.3 Correlation measures 
 

The statistical correlation coefficient of a series of pairs (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2,… , 𝑛 of two linear 

random variables 𝑋, 𝑌 (linear-linear) can be estimated by 

 

 𝑟𝑋𝑌 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥)
2∑ (𝑦𝑖 − 𝑦)

2𝑛
𝑖=1

𝑛
𝑖=1

. (B.7) 

 

The corresponding linear-directional and directional-directional correlation coefficients are 

defined in Appendix A.3. 

 

 

B.4 Evaluation metrics for regression (linear and directional) 

models 
 

In the context of evaluating the performance of different regression/calibration models, the 

following statistical measures can be applied as regards the linear variables: 

 

the bias (BIAS), 

 



Appendix B 

169 

 BIAS =
1

𝑛
∑(�̂�𝑖 − 𝑥𝑖)

𝑛

𝑖=1

, (B.8) 

 

the root mean square error (RMSE) 

 

 RMSE = √
1

𝑛
∑(𝑥𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

, (B.9) 

 

the mean absolute error (MAE) 

 

 MAE =
1

𝑛
∑|�̂�𝑖 − 𝑥𝑖|,

𝑛

𝑖=1

 (B.10) 

 

and the scatter index (SI): 

 

 SI =
RMSE

𝑥
, (B.11) 

 

where 𝑛 is the sample size of the dataset, 𝑥𝑖 is the 𝑖 −th value of the reference linear variable, 

�̂�𝑖 is the 𝑖 −th value of the calibrated linear variable and 𝑥 is the mean value of the reference 

linear variable. Clearly, the above-defined statistical measures are proportional (in various 

forms) to the error (difference) between the corrected and the reference linear variable. 

Specifically, MAE takes into consideration the sum of the absolute errors, RMSE and SI the 

sum of the errors squared, while BIAS the positive and negative value of this difference. 

Though, it should be noted that RMSE (and SI) is more sensitive to the presence of outliers 

than MAE, since large errors are biased towards outliers; see also Hyndman and Koehler 

(2006). Let us note that MAE, RMSE and SI comprise stricter and more realistic control criteria 

than BIAS, since the latter neutralizes the foregoing differences by definition, meaning that 

positive differences can be offset by negative ones. The quality of a calibration performance is 

characterized as ‘good’, if the values of the applied statistics are as close as possible to zero. 

Let us also remind that the values of BIAS, RMSE and MAE take the units of the variable under 

examination.  

 

As regards the directional variables the following statistical measures can be applied: 

 

the bias (BIAS), 

 

 BIAS = �̅� − �̅�, (B.12) 

 

the mean circular absolute error (MCAE) (Jing-Jing et al., 2014), 

 

 MCAE =
1

𝑛
∑|𝑑(𝜃𝑖, 𝜙𝑖)|

𝑛

𝑖=1

, (B.13) 

 

where 𝑑 is obtained from Eq. (A.9),  

 

the root mean error (RME) (Karathanasi et al., 2016) 
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 RME = √−2ln(
1

𝑛
∑|cos

𝜃𝑖 − 𝜙𝑖
2

|

𝑛

𝑖=1

), (B.14) 

 

and finally, a modification of the overall estimated circular prediction bias proposed by 

(SenGupta et al. 2013), the mean relative bias (MRB), 

 

 MRB =
1

𝑛
∑sin(

𝜃𝑖 −𝜙𝑖
2

)

𝑛

𝑖=1

, (B.15) 

 

where �̅� and �̅� are the sample mean directions. If the values of BIAS, MCAE, RME and MRB 

are close to zero, then the calibration performance is good. Let us also remind that the values 

of BIAS and MCAE are in radians.  

 

 

B.5 Goodness-of-fit testing for univariate distributions  
 

The coefficient of determination is given by 

 

 𝑅𝑎,1
2 =

∑ (�̂�𝑖 − 𝐹)
2𝑛

𝑖=1

∑ (𝐹�̃� − 𝐹)
2𝑛

𝑖=1 + ∑ (𝐹𝑖 − 𝐹�̃�)
2𝑛

𝑖=1

, (B.16) 

 

where 𝐹 ̃ estimate is obtained from the probability model, 𝐹𝑖, 𝑖 = 1,… , 𝑛, (where 𝑛 denotes the 

sample size) are obtained by using the Weibull plotting positions 𝐹(𝑥𝑖) = 𝑖 (𝑛 + 1)⁄ , 𝑖 =

1,… , 𝑛, and 𝐹 = (1 𝑛⁄ )∑ �̃�𝑖
𝑛
𝑖=1 . The Weibull plotting positions were selected since they 

provide unbiased estimates of the observed cumulative probabilities regardless of the 

underlying distribution. 

 

 

B.6 Mann-Kendall test 
 

The Mann-Kendall test is a non-parametric test, frequently used to detect the existence of 

monotonic (upward or downward) trends in time series; see, e.g. Hipel and McLeod (1994). 

The test is based on the correlation between ranks of a time series and their order, instead of 

the actual values of the series, and it is less sensitive to the presence of outliers. The null 

hypothesis H0 is that the data come from a population of independent and identically distributed 

variables. An important advantage of Mann-Kendall test is that it is distribution-free in contrast, 

for example, to the regression slope test, where the residuals are assumed to be normally 

distributed. On the other hand, the examined data should not be serially correlated in order for 

the estimated p values to be correct. The Mann-Kendall test statistic is calculated as follows: 

 

 𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑘)
𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1 ,  (B.17) 

 

where  

 

 𝑠𝑔𝑛(𝑥) = {
1,  if 𝑥 > 0
0,  if 𝑥 = 0
−1, if 𝑥 < 0.

 (B.18) 

 

The variance of 𝑆 (in the general case where ties are present) is given as follows: 
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 𝜎𝑆
2 =

1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑞(𝑡𝑞 − 1)(2𝑡𝑞 + 5)

𝑄
𝑞=1 ],  (B.19) 

 

where 𝑛 denotes the time series length, 𝑄 is the number of tied groups and 𝑡𝑞 is the number of 

observations in the 𝑞 −th tied group. The final test statistic 𝑍 results from the following 

transformation of 𝑆: 

 

 𝑍 = {

(𝑆 − 1) 𝜎𝑆⁄ , if 𝑆 > 0
0,                   if 𝑆 = 0
(𝑆 − 1) 𝜎𝑆⁄ , if 𝑆 < 0.

 (B.20) 

 

Positive (negative) values of 𝑍 suggest an upward (downward) trend. As the sample size 

becomes larger, the test statistic 𝑍 follows approximately the Gaussian distribution. 

 

 

B.7 Mardia-Wheeler-Watson test 
 

Mardia-Wheeler-Watson test is a non-parametric procedure that can be applied to samples of 

circular data in order to test the hypothesis that the examined samples have identical circular 

distributions regarding mean direction, circular variance or both.  

 

Let 𝜃1 and 𝜃2 be two independent random samples with sample size 𝑛1 and 𝑛2, from 

populations with continuous circular distributions 𝑃1(𝜃) and 𝑃2(𝜃), respectively. In order to 

test the null hypothesis 

 

 𝐻0: 𝑃1(𝜃) = 𝑃2(𝜃), (B.21) 

 

the circular ranks (uniform scores) of the combined sample are calculated; let (𝑟1, … , 𝑟𝑛1) be 

the ranks of the directions of the first sample. Mardia-Wheeler-Watson test statistic is based on 

the criterion 

 

 𝑊 =
2(𝑁 − 1)(𝐶𝑗

2 − 𝑆𝑗
2)

𝑛1𝑛2
, (B.22) 

 

where 𝐶𝑗 = ∑ cos(2𝜋𝑟𝑖 𝑁⁄ )
𝑛𝑗
𝑖=1

, 𝑆𝑗 = ∑ cos(2𝜋𝑟𝑖 𝑁⁄ )
𝑛𝑗
𝑖=1

 with 𝑗 referring to sample either 1 or 

2, and 𝑁 = 𝑛1 + 𝑛2. In order to apply efficiently this approximation, 𝑁 > 17 as proposed by 

Batschelet (1981) or 𝑁 ≥ 10 as proposed by Fisher (1993), which is also similar to the 

proposition of Mardia and Spurr (1973). Furthermore, circular data of samples should not be 

tied (i.e. equal numerical values in the combined sample) or the two sample dispersions should 

not be very different (Batschelet, 1981). It has been shown that 𝑊 approaches a 

𝜒2 −distribution with two degrees of freedom for large 𝑁. The null hypothesis is rejected for 

large values of 𝑊 (>𝜒𝛼,2
2 ) (Wheeler and Watson, 1964; Mardia, 1967; Batschelet, 1981). 
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Appendix C Extremes 
 

C.1 Parameter estimation for GP distribution 
 

The GP parameters are usually estimated by the maximum likelihood method (del Castillo and 

Serra, 2015; Grimshaw, 1993), the probability weighted moments introduced by Greenwood et 

al. (1979), the method of moments (Hosking and Wallis, 1987) and the elemental percentile 

method based on a two-stage procedure proposed by Castillo and Hadi (1997).; see also the 

extensive study of Bermudez and Kotz (2010) on this issue.  

 

The most popular method among the estimators is the maximum likelihood (ML) method. The 

likelihood function is the joint pdf of a random sample 𝑥1, … 𝑥𝑛 from a distribution with pdf 

𝑓(𝑥𝑖; 𝜃) as a function of 𝜃, and is defined as 

 

 L(𝜃; 𝐱) ≡ L(𝜃) =∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

, 𝜃 ∈ 𝛺, (C.1) 

 

where 𝜃 is the unknown parameter (in a set 𝛺) on which 𝑓 depends, and 𝐱 = (𝑥1, … , 𝑥𝑛)
T. 

Since the natural logarithm is a monotonically increasing function, for convenience in the 

calculations, the natural logarithm of the likelihood function, ℓ(𝜃) = lnL(𝜃) = ∑ 𝑓(𝑥𝑖; 𝜃)
𝑛=1
𝑖 , 

called log-likelihood function, is used to estimate the values of the parameters that maximize 

this function, denoted by 𝜃. Subsequently, 𝜃 is the maximum likelihood estimator of 𝜃, which 

can be obtained by differentiating the log-likelihood function with respect to 𝜃and solving the 

following equation: 

 

 
𝜕lnL(𝜃)

𝜕𝜃
= 0. (C.2) 

 

The log-likelihood function of the GP distribution is given by  

 

 ℓ(𝜎𝑢, 𝜉) =

{
 
 

 
 
−𝑛𝑢log𝜎𝑢 − (1 +

1

𝜉
)∑log(1 +

𝜉𝑦𝑗

𝜎𝑢
)

𝑛𝑢

𝑗=1

, 𝜉 ≠ 0, 1 +
𝜉𝑦𝑗

𝜎𝑢
> 0

−𝑛𝑢ln𝜎𝑢 −
1

𝜎𝑢
∑𝑦𝑗

𝑛𝑢

𝑗=1

,                                   𝜉 = 0.

 (C.3) 

 

Assuming that ℓ(⋅) is differentiable, the ML estimator �̂� = (�̂�𝑢, 𝜉) for the unknown parameters 

𝜆 = (𝜎𝑢, 𝜉) is obtained by maximizing Eq. (C.3). The maximization problem is solved 

numerically using optimization/iterative methods, such as Newton-Raphson method and 

Expectation-Maximization algorithm, since no explicit solution exists for the equations derived 

after differentiating the above equation. 

 

Note that ML estimators do not exist for 𝜉 > 1 since log-likelihood becomes infinite and have 

higher efficiency when 𝜉 is close to zero. In general, for 𝜉 ≤ 1, ML estimators exist.  
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Appendix D Numerical model: MIKE21 by DHI 
 

The numerical modelling package that was used for the purposes of this thesis is MIKE 21/3 

Coupled Model Flexible Mesh (hereafter MIKE21 CFM) developed by DHI Group (DHI, 

2016a). The two-dimensional depth-averaged flow (2DH) simulations are based on a cell 

centred finite volume method with an unstructured mesh for the more accurate representation 

of complex coastal areas while the basic principles that are applied are the conservation of fluid 

momentum, wave energy and mass (fluid and sediment). This modelling suite can be 

implemented for various hydraulic phenomena in lakes, rivers, estuaries, bays, coastal areas 

and seas through a dynamic modelling system; in the context of this thesis, it combines three 

different modules: (i) the hydrodynamic (HD) module; (ii) the spectral wave (SW) module, 

and; (iii) the sand transport (ST) module.  

 

The general structure behind this model is first to analyse the available data as concerns initial 

bathymetry, flow patterns, sediment composition etc. Then, the core computational components 

of MIKE21 CFM are the first two modules, which simulate the mutual interaction between 

currents and waves using a dynamic coupling for the determination of the hydraulic conditions 

for the initial and subsequent situations. The results of these models are used as input for the 

additional dynamic coupling that includes the third module, which gives a full feedback of the 

seabed level changes on waves and flow calculations resulting in a new bathymetry until the 

predefined final time period is reached. Let us note that the sediment transport rates and 

morphological changes are calculated simultaneously with the hydrodynamics. The simulation 

of flows and transports in marine, coastal and estuarine areas is based on a flexible mesh 

approach. The quality of the available input data for all the above modules (flow velocity, wave 

parameters, grain composition) is of critical importance as well as the data that will be used for 

calibrating the model results. 

 

 

D.1 Hydrodynamic (HD) module 
 

The hydrodynamic model solves the 2D incompressible Reynolds averaged Navier-Stokes 

equations under the Boussinesq simplifying approximation and the hypothesis of hydrostatic 

pressure. The continuity equation (in horizontal Cartesian coordinates) over water depth ℎ =
𝜂 + 𝑑, with 𝜂 denoting the surface elevation and 𝑑 the still water depth, is the following: 

 

 
𝜕ℎ

𝜕𝑡
+
𝜕ℎ�̅�

𝜕𝑥
+
𝜕ℎ�̅�

𝜕𝑦
= ℎ𝑆HD, (D.1) 

 

where 𝑡 is time, ℎ�̅� and ℎ�̅� denote the depth-averaged values of the velocity components in the 

𝑥 − and 𝑦 −direction, respectively, and 𝑆HD is the magnitude of discharge due to point sources. 

The momentum equations for the 𝑥 − and 𝑦 −component are the following: 

 

 

𝜕ℎ�̅�

𝜕𝑡
+
𝜕ℎ�̅�2

𝜕𝑥
+
𝜕ℎ�̅��̅�

𝜕𝑦
= 𝑓�̅�ℎ − 𝑔ℎ

𝜕𝜂

𝜕𝑥
−
ℎ

𝜌0

𝜕𝑝𝑎
𝜕𝑥

−
𝑔ℎ2

2𝜌0

𝜕𝜌

𝜕𝑥
+
𝜏𝑠𝑥
𝜌0
−
𝜏𝑏𝑥
𝜌0

                         −
1

𝜌0
(
𝜕𝑠𝑥𝑥
𝜕𝑥

+
𝜕𝑠𝑥𝑦

𝜕𝑦
) +

𝜕(ℎ𝑇𝑥𝑥)

𝜕𝑥
+
𝜕(ℎ𝑇𝑥𝑦)

𝜕𝑦
+ ℎ𝑢𝑠𝑆HD,

 (D.2) 

 

and  
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𝜕ℎ�̅�

𝜕𝑡
+
𝜕ℎ�̅��̅�

𝜕𝑥
+
𝜕ℎ�̅�2

𝜕𝑦
= −𝑓�̅�ℎ − 𝑔ℎ

𝜕𝜂

𝜕𝑦
−
ℎ

𝜌0

𝜕𝑝𝑎
𝜕𝑦

−
𝑔ℎ2

2𝜌0

𝜕𝜌

𝜕𝑦
+
𝜏𝑠𝑦

𝜌0
−
𝜏𝑏𝑦

𝜌0

                          −
1

𝜌0
(
𝜕𝑠𝑦𝑥

𝜕𝑥
+
𝜕𝑠𝑦𝑦

𝜕𝑦
) +

𝜕(ℎ𝑇𝑥𝑦)

𝜕𝑥
+
𝜕(ℎ𝑇𝑦𝑦)

𝜕𝑦
+ ℎ𝑣𝑠𝑆HD,

 (D.3) 

 

where 𝑓 is the Coriolis parameter, 𝑔 is the gravitational acceleration, 𝑝𝑎 is the atmospheric 

pressure, 𝜌0 is the reference density of water, 𝜌 is the water density, 𝑠𝑖𝑗 is the radiation stresses, 

𝜏𝑠 is the surface wind stress and 𝜏𝑏 is the bottom stress, and 𝑇𝑖𝑗 is the lateral stresses and 𝑢𝑠, 𝑣𝑠 

are the velocity components at which the water is discharged. 

 

A cell-centred finite volume technique is used for the spatial discretization of the domain. An 

approximate Riemann solver, known as Roe’s scheme (Roe, 1981), is used for the computation 

of the convective fluxes. The solution of Eqs. (D.2) and (D.3) result in the values of water 

particle velocities and current components that are responsible for the sediment transport in the 

coastal zone. Smagorinsky formulation is used to represent horizontal eddy viscosity while 

bottom friction can be specified by the Manning’s roughness coefficient.  

 

 

D.2 Spectral wave (SW) module 
 

The spectral wave module is a third-generation spectral wind-wave generation model that 

simulates the growth, decay and transformation of wind-generated waves and swells both in 

offshore and coastal regions, and is based on unstructured meshes (in the geographical domain). 

The above simulations are based on the conservation equation of the wave action expressed by 

Eq. (5.1). In the source term 𝑆, the following physical phenomena are included: 

 

 wave generation and growth by wind action 𝑆𝑖𝑛, proposed by the quasi-linear theory 

developed by Janssen in a series of studies (Janssen, 1989; Janssen, 1991; Janssen et al., 

1989) as regards wind and wave interaction; 

 wave energy transfer due to non-linear wave-wave interaction 𝑆𝑛𝑙, using the Discrete 

Interaction Approximation (DIA) of Hasselmann et al. (1985); 

 dissipation of wave energy due to white-capping 𝑆𝑤𝑐, proposed by Hasselmann (1974) and 

tuned according to Janssen (1989) and Janssen (1992); 

 dissipation of wave energy due to bottom friction 𝑆𝑏𝑓, based on the approach of Johnson 

and Kofoed-Hansen (2000), which takes into consideration wave and sediment properties; 

 dissipation of wave energy due to wave breaking 𝑆𝑤𝑏, based on the breaking model of 

Battjes and Janssen (1978), and Eldeberky and Battjes (1996). 

 

Wind forcing and diffraction can also be included in the wave model. For the discretization of 

the governing equations in the geographical and spectral space, a cell-centred finite volume 

formulation is used by subdividing the continuum into non-overlapping elements, while a multi-

sequence explicit scheme is applied for the wave propagation, and a fractional step method is 

implemented for the time integration, where an explicit method is used for solving the 

propagation step. Two different formulations are included in this module: i) the fully spectral 

formulation, suitable for near-shore applications, and ii) the directional decoupled parametric 

formulation, mostly used for offshore wave modelling.  

 

 

D.3 Sediment transport (ST) module 
 

The computed flow and wave fields are used as input for the sediment transport model. The 

modelling of non-cohesive sediment (i.e. sand) transport fields for the calculation of seabed 
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level changes and sediment transport rates can be obtained by using the theory of combined 

waves and currents, including the wave breaking effect. This module can be applied in coastal 

regions (at a local or regional scale), such as estuaries, tidal inlets and coasts, as well as in 

coastal structures, such as harbours.  

 

The total sediment transport 𝑞𝑡𝑜𝑡 is defined by the bed load transport 𝑞𝑏 (i.e. load that is in 

continuous contact with the seabed during transport) and the sediment transport in suspension 

𝑞𝑠 (i.e. load that is moving without being in contact with the seabed due to the turbulent flow). 

Wash load (i.e. finer suspended material than that of the seabed that remain in permanent 

suspension) is considered negligible in the coastal environment and is not included in this 

module. 

 

As regards the bed load transport, it is calculated from the instantaneous Shields parameter 

according to the model that was proposed by Engelund and Fredsøe (1976). Based on the 

equilibrium of agitating and stabilizing forces on a sediment particle, Engelund and Fredsøe 

(1976) proposed the following non-dimensional form that proved to be accurate for fine to 

medium sediments:  

 

 𝛷𝐵 = 5𝑝(√𝜃 − 0.7√𝜃𝑐), (D.4) 

 

where 𝑝 represents the probability that a certain fraction of the sediment particles are in 

movement in a single layer and 𝜃𝑐 is the critical Shields parameter equal to 0.045. The 

probability p  is defined by: 

 

 𝑝 = (1 + (

𝜋
6
𝜇𝑑

𝜃 − 𝜃𝑐
)

4

)

−1 4⁄

, (D.5) 

 

where 𝜇𝑑 is a dynamic friction coefficient, estimated at 0.51. 

 

In contrast with bed load that responds instantaneously with the flow, the suspended sediment 

transport is characterized by a phase-lag as regards its transport and it is the result of the product 

of the time-averaged instantaneous flow velocities 𝑢 and the instantaneous sediment 

concentration 𝑐 by integrating over the local water depth ℎ: 

 

 𝑞𝑠 =
1

𝑇
∫ ∫(𝑢𝑐)𝑑𝑧𝑑𝑡

ℎ

2𝑑

𝑇

0

, (D.6) 

 

where 𝑑 is the characteristic grain dimeter, usually equal to the median grain diameter 𝑑50.  

 

The sediment transport rates are found by linear interpolation from a sediment transport table, 

which is calculated prior to the main model run in order to speed up the calculations, using an 

intra wave force description. The integrated momentum approach of Fredsøe (1984) is used for 

the time integration of the boundary layer. Based on equilibrium sediment transport method, 

the values of this table are derived from a quasi-3D numerical model (STPQ3D), which 

calculates in the two horizontal dimensions (longshore and cross-shore) time-averaged and 

instantaneous hydrodynamic flow conditions that drive sediment transport algorithms with an 

one-dimensional flow velocity profile model as regards the vertical direction; see Elfrink et al. 

(1996). The calculation of the sediment transport rates is based on an intra wave force balance 

description that takes into account shear stresses on bottom and wave breaking among others. 
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D.4 Morphology  
 

The determination of the seabed level change at each element is based on the Exner equation 

(sediment continuity equation) that is written (in horizontal Cartesian coordinates) as follows: 

 

 −(1 − 𝑛)
𝜕𝑧𝑏
𝜕𝑡

=
𝜕𝑆𝑥,ST
𝜕𝑥

+
𝜕𝑆𝑦,ST

𝜕𝑦
− Δ𝑆ST, (D.7) 

 

where 𝑛 is the bed porosity, 𝑧𝑏 is the seabed level, 𝑡 is time, 𝑆𝑥,ST, 𝑆𝑦,ST are the total load 

transport in the 𝑥, 𝑦 −direction, respectively, and Δ𝑆ST is the sediment source/sink rate. For an 

equilibrium description, the source/sink term is set to zero, unless lateral sediment supply is 

considered.  

 

Based on the seabed level change rates, the seabed level is updated for every Nth HD-time step, 

where N is a time step factor defined by the user. The new values of the seabed level are 

obtained by solving the above differential equation with a forward-in-time difference scheme 

as follows: 

 

 𝑧𝑛𝑒𝑤 = 𝑧𝑜𝑙𝑑 +
1

1 − 𝑛

𝜕𝑧

𝜕𝑡
Δ𝑡HD. (D.8) 

 

The morphodynamics are fully integrated with above-mentioned modules allowing the seabed 

level changes to provide input for the flow and wave fields so that they are adapted to the new 

bathymetrical state. 
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Appendix E Datasets 
 

Along the thesis, three data sources have been considered for modelling the wind and wave 

characteristics: i) in situ measurements using oceanographic buoys; ii) satellite data, and; iii) 

results from numerical models. In this section, these data sources are summarised and the 

corresponding data sets from each type are presented. In Table E-6-1, the overall quality and 

features of each data source, characterized by its own strengths and shortcomings, is presented. 

 

The highest quality and most accurate metocean data are obtained by in situ measurements. For 

example, offshore wind data can be obtained from meteorological masts, oceanographic buoys 

and fixed platforms and can be real-time or past measurements. In case of a marine renewable 

project development, it is essential to consider the acquisition of such data, which are 

accompanied by rather high costs due to the installation, operation, and maintenance, with the 

aim of providing an accurate analysis and forecasts, and mitigating involved risks. 

Nevertheless, in situ measurements suffer from data incorrectly recorded because of 

malfunction of the measuring device (wind sensor), defects in the power supply, errors in the 

data entry or during the measurement analysis process, etc. Moreover, such measurements are 

affected by external conditions, since these measuring devices operate in a dynamically 

changing environment; for example, there can be deviations in the rotation movements (i.e. roll, 

pitch and yaw) of the buoy due to the presence of sea waves or currents of high intensity. 

Despite the abovementioned deficiencies of in situ measurements, which can reinforce the 

presence of outliers, they have historically been considered as the primary reference data source 

for the validation and calibration of gridded metocean data as a result of the increased 

measurement accuracy; see, for example, Gower (1996). 

 

As in situ measurements are scarce in space and the ocean conditions are rough, remote sensing 

techniques play an important role. Remotely-sensed data mainly refers to satellite observations 

that can be a considerable supplement to in situ measurements. The most satellite systems that 

are used for the quantification of metocean components through the transmission and reception 

of specific electromagnetic signals are insensitive to the meteorological conditions, solar 

illumination and day/night cycle. Nevertheless, the periodic coverage and spatial resolution 

remain a limiting issue for satellite products. A major step in the efficient utilization of satellite 

data refers to the enrichment of their corresponding spatiotemporal coverage; this can be 

achieved by appropriately blending different satellite (and sensor) products and generating 

gridded data sets by applying interpolation techniques. Although the quality of satellite data is 

often considered unsuitable for coastal areas due to the large biases near land-sea boundaries, 

(see, for example, Carvalho et al. (2014a)) yet, they can provide the basic starting point for the 

preliminary (comparative) offshore wind power assessment (Lizuma et al., 2013). 

 

Numerical modelling data sets come from the numerical solution of the equations that govern 

the physical processes of metocean parameters in hindcast or forecast mode. In order to run 

such models an assimilation procedure, known as analysis, is implemented so that numerous 

point measurements around the world are integrated as well. Reanalysis schemes produce long-

term time series that are suitable for climatological analyses. These data are available from 

specific providers and they cover over 30-year periods of wind and wave parameters all over 

the oceans with a sufficient resolution. The main limitation of numerical models is the 

uncertainties involved in the initial and boundary conditions (e.g. from data of low accuracy) 

that end up multiplying within the assimilation procedure. 
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Table E-6-1. Advantages and disadvantages of metocean data sources used in this thesis. 

Data source Advantages Disadvantages 

In situ measurements  High precision 

measurement of physical 

quantities 

 Data provided as time series 

 Gaps in recordings due to 

instrument malfunction 

 Measurements errors due to 

external conditions  

 Point measurement 

coverage 

 Usually of short duration 

 Expensive and not easily 

accessible 

Satellite data  Global spatial coverage (of 

coarse resolution) 

 Usually of long duration 

 The next more reliable 

source after in situ 

measurements 

 Questionable quality at the 

land-sea boundary 

 Errors when converting the 

satellite's original 

measurements to the 

corresponding values of 

physical quantity and in 

interference patterns 

 Periodicity of satellite 

tracks 

Data from numerical models  Global spatial coverage 

 Long duration 

 Easily accessible and 

usually free of charge 

 Data provided as time series 

 Uncertain results due to the 

model errors (e.g. 

parameterization errors, low 

accuracy of initial and 

boundary conditions) 

 Subject to errors when 

complex topography is 

represented with a coarse 

spatial resolution 

 

 

E.1 In situ measurements  
 

In the Greek Seas, a network of eleven oceanographic buoys, deployed in deep water locations, 

operates within the framework of the POSEIDON marine monitoring and forecasting system 

since 2000 under HCMR (Soukissian and Chronis, 2000). Each buoy is equipped with 

meteorological and oceanographic sensors for measuring, among others, temperature, 

atmospheric pressure, salinity. The wind measurements are performed at 3 m height above sea 

surface with recording period 600 s and frequency 1 Hz, and the measurements are performed 

every 3 h. In this thesis, the buoy wind and wave data consist of long-term time series of wind 

speed, wind direction, significant wave height, wave period and wave direction for various 

locations in the Aegean Sea and with varying recording periods. Today, four buoys, measuring 

wind and wave parameters, are operating in the Aegean Sea. 

 

In the Spanish Seas, twelve oceanographic buoys located in deep water depths provide data 

from measured parameters similar to the Greek buoys. The monitoring system operates under 

the responsibility of the Spanish Port Authority (Puertos del Estado). The measurements are 

made at 3 m height above sea surface with a recording interval of 1 h. The corresponding wind 

speed time series cover time periods varying between 5 and 18 years. In this thesis, only wind 

data have been analysed from the Spanish network from three buoys located in the 

Mediterranean part of the Spanish waters. 

 

Wind data from both Greek and Spanish buoys were utilized in offshore wind energy 

applications presented in Sections 4.3 and 4.4. Furthermore, wind and wave measurements from 
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a Greek buoy location were used for the description of wind and wave climatology, 

respectively, and to validate the wave model in Section 5.4 along with an AWAC profiler. 

 

 

E.2 Satellite data  
 

The satellite data used in this thesis refer to wind speed and direction time series obtained from 

the Blended Sea Winds (BSW), developed by the National Climatic Data Center (NCDC) of 

the NOAA agency. This dataset consists of blending observations of ocean surface vector winds 

and wind stresses from long-term multiple satellites (up to six satellites since June 2002). In 

this way, a larger spatial and temporal coverage of the measurements is feasible compared to 

the individual satellite data sets. Specifically, NOAA has developed blended satellite products 

on a global basis, with 6-h temporal resolution at a spatial resolution of 0.25°×0.25° (∼28 

km×28 km). In 1987, there was only one satellite, while in 2000, there were more than five 

(SSMIF13, SSMI F14, SSMI F15, TMI, QuikSCAT, AMSR-E). The common characteristic of 

the blended product is that it is based on the same retrieval algorithms for all instruments 

involved. Regarding the sampling time intervals, they generally decrease as the considered 

latitudes increase. Since 2000, the sampling time intervals have decreased to less than 5 h in 

the tropics and higher latitudes. From the blended satellite product, the 20-yeartime series 

extending from January 1, 1995 to December 31, 2014 with a 6-h time window, at 10 m height 

above sea level was extracted and analysed. The wind directions of the BSW product originate 

from the NCEP/DOE (Department of Energy) Reanalysis II and are interpolated onto the BSW 

grid. A detailed description of BSW datasets can be found in Zhang et al. (2006). This dataset 

was considered in the application of Section 4.3 and can be downloaded from 

ftp://eclipse.ncdc.noaa.gov/pub/seawinds/ SI/uv/.  

 

Evidently, the procedure of blending the ocean surface winds from multiple satellites into a 

single product results in inhomogeneous data coverage in the spatial domain; see Fig. 1 of 

Soukissian et al. (2017), where the temporal percentage of BSW data coverage for the 

Mediterranean Basin is depicted for 1995–2014. The majority of the 0.25°◦boxes are sampled 

more than 75% of the examined period within each 6-h time window. Specifically, the temporal 

percentage is satisfactory in the open sea and offshore areas of all the main sub-basins (i.e. 

western Mediterranean, Ionian, and Levantine Seas), where the number of measurements is 

more than adequate. In the Adriatic Sea and a large part of the Aegean Sea, this number is 

decreased, but not drastically, still permitting statistically robust assessments. Areas where the 

satellite temporal coverage percentage is very poor (10% of the maximum expected number of 

observations), and thus not acceptable for further statistical analysis, are identified in the 

northern and central Aegean Sea. The results referring to these areas are disregarded from the 

analysis. On the other hand, the data availability near the coasts may also be rather low. 

However, the evaluation procedure with buoy measurements showed that the collocated data 

sample sizes were adequate in this context. 

 

 

E.3 Data from numerical models 
 

A global atmospheric reanalysis product was used in this thesis, the ERA-Interim dataset, 

released by the European Centre for Medium-Range Weather Forecasts (ECMWF), with spatial 

resolution of approximately 80 km (or 0.75°), covering the geographical area of the 

Mediterranean Sea and extending from 1979 to 2014 (Dee et al., 2011). ERA-Interim is the 

successor of ERA-40 and stopped its update onwards in time in August 2019. It uses the 

ECMWF Integrated Forecasting System (IFS) Cy31r2 model and the 4-D variational data 

assimilation and has many enhancements compared to ERA-40 such as new wave height data 

from altimeters, bias correction of satellite radiance data and improved model physics. 

Moreover, the data quality provided by ERA-Interim is more homogeneous than its predecessor 
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and has additional simulate data. The quality of the ERA-Interim reanalysis wind data has been 

extensively verified in other works; see, for example, Alvarez et al. (2014); Carvalho et al. 

(2014b)).  

 

The wave-model component of ERA-Interim is based on the WAM model, the spatial 

resolution is 110 km×110km, provided every 6 h, with the directional wave spectra 𝑆(𝜔, 𝜃) 
being discretized in 24 directions 𝜃 and 30 frequencies 𝜔. The quality of the ERA-Interim wave 

data has been assessed, among others, by Stopa and Cheung (2014), and was characterized as 

a reliable dataset, especially for climate studies. 

 

In Section 4.2, the offshore wind climate is analysed with this dataset. An inherent difficulty in 

this analysis is related to the rather low spatial resolution, which renders the obtained results 

less accurate near the coasts and in narrow straits and basins. However, this difficulty is not an 

intractable hindrance since the aim of this study is to provide a general overview of the long-

term wind climatology over the Mediterranean Sea; an in-depth wind climate analysis in coastal 

areas requires different data in order to be successfully accomplished. Sections 4.3 and 4.4 

utilized the ERA-Interim wind speed and wind direction data, respectively, while Section 4.5 

included a study of the directional extreme value model based on the ERA-Interim wave data. 

As regards wind data, the examined time series referred to wind direction at 10 m above sea 

level and 6-hour time intervals while concerning wave data, the variables analysed were 

significant wave height and mean wave direction at the same temporal resolution. Finally, the 

time series of wave statistical parameters used in Section 5.5 as input for the MIKE 21 coupled 

model was obtained from the Mediterranean Sea Waves forecast system, which is based on the 

third-generation wave model WAM Cycle 4.5.4 (Günther and Behrens, 2012). The current 

velocity time series were obtained from the Med-currents system, whose equations are solved 

by an Ocean General Circulation Model based on the NEMO model (version 3.6); for more 

details, see Clementi et al. (2017). Both datasets can be accessed at 

http://marine.copernicus.eu/services-portfolio/access-to-products/. 
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